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Abstract

The association of algebraic objects to forms has had many important applications
in number theory. Gauss, over two centuries ago, studied quadratic rings and ideals
associated to binary quadratic forms, and found that ideal classes of quadratic rings
are exactly parametrized by equivalence classes of integral binary quadratic forms.
Delone and Faddeev, in 1940, showed that cubic rings are parametrized by equivalence
classes of integral binary cubic forms. Recently, Bhargava has showed that quartic
rings (with cubic resolvents) are parametrized by classes of pairs of integral ternary
quadratic forms, and that quintic rings (with sextic resolvents) are parametrized by
quadruples of integral alternating quinary forms. Bhargava has also studied ideals
in quadratic and cubic rings, and found that they are associated to pairs of 2 by 2
and 3 by 3 integral matrices. Birch, Merriman, Nakagawa, Corso, Dvornicich, and
Simon have all studied rings associated to binary forms of degree n for any n, but it
has not previously been known which rings, and with what additional structure, are
associated to binary forms.

In this thesis, we explain exactly what algebraic structures are parametrized by
binary n-ic forms, for all n. The algebraic data associated to an integral binary n-ic
form includes a rank n ring, an ideal class for that ring, and a condition on the ring
and ideal class that comes naturally from geometry. We also give a different story for
what is parametrized by integral binary quartic forms, namely, binary quartic forms
parametrize quartic rings with a monogenic cubic resolvent. We further show that
classes of pairs of n by n matrices parametrize the ideal classes of rings associated to
binary n-ic forms.

In fact, we prove these parametrizations when any base scheme replaces the in-
tegers, and show that the correspondences between forms and the algebraic data are
functorial in the base scheme. We also give geometric constructions of the rings and
ideals from the forms that parametrize them. This geometric approach allows us to
also give a statement of Gauss composition, the parametrization of ideal classes of
quadratic rings by binary quadratic forms, over an arbitrary base scheme. We give an
analog of Bhargava’s parametrization of quartic rings over an arbitrary base scheme,
including a geometric construction of a quartic ring from a pair of ternary quadratic
forms that works even in degenerate cases and commutes with base change. We also
give a subspace of pairs of ternary quadratic forms that parametrizes quartic rings
with quadratic subrings, which includes orders in quartic fields whose Galois closure
has Galois group D4.
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Chapter 1

Introduction

There has been a long history of studying algebraic objects associated to forms.
Gauss [25], over two centuries ago, studied quadratic rings and ideals associated to
binary quadratic forms, and found that ideal classes of quadratic rings are exactly
parametrized by equivalence classes of integral binary quadratic forms. Birch and
Merriman [8] and Nakagawa [35] studied rank n rings (rings isomorphic to Zn as
Z-modules) associated to integral binary forms of degree n. These rings have further
been studied by Del Corso, Dvornicich, and Simon [18], who determined the splitting
of the prime p in such a ring in terms of the factorization of the binary n-ic form
modulo pk. In [38], Simon constructed an ideal class of the associated ring from a
binary n-ic form, and in [37] this ideal class was applied to study integer solutions
to equations of the form Cyd = F (x, z), where F is a binary form. Bhargava [4, 5]
studied ideals in quadratic and cubic rings, and found that they are associated to
pairs of 2 by 2 and 3 by 3 integral matrices. Through these associations he found
another parametrization of ideal classes of quadratic rings (different from, but related
to Gauss’s) and a new parametrization of ideal classes in cubic rings. Morales [34, 33]
studied ideal classes in rank n rings that are associated to pairs of symmetric n by n
matrices, and found a relation to the 2-part of the class group of the rings. Bhargava
obtained a similar but more exact relation between pairs of symmetric n by n integral
matrices and the 2-part of the class group of rank n rings in the cases n = 2 and 3.

Parametrizations of, or moduli spaces for, rings of low rank have also been found
among forms. Delone and Faddeev [21] showed that cubic rings are parametrized by
equivalence classes of integral binary cubic forms (see also the work of Davenport and
Heilbronn [17] and Gan, Gross, and Savin [24]). Bhargava [6, 7] showed that quartic
rings (with cubic resolvents) are parametrized by classes of pairs of integral ternary
quadratic forms, and that quintic rings (with sextic resolvents) are parametrized by
quadruples of integral alternating quinary forms.

Binary forms have played an important role in the above story. In this thesis,
we explain exactly what algebraic structures are parametrized by binary n-ic forms,
for all n (Chapter 3). The algebraic data associated to an integral binary n-ic form
includes a rank n ring, an ideal class for that ring, and a condition on the ring and
ideal class that comes naturally from geometry. We also give a different story for what
is parametrized by binary quartic forms. Integral binary quartic forms parametrize

1



quartic rings with a monogenic cubic resolvent. We use a geometric point of view to
relate these two stories (Chapter 4). We further find a space that parametrizes all
the ideal classes of rings associated to binary n-ic forms (Chapter 5).

We can think of these orbit spaces that parametrize algebraic structures geomet-
rically. For example, GL2 classes of binary cubic forms are the space A4/GL2. One
approach is to then use a fundamental domain over Z to associate the algebraic ob-
jects of interest with lattice points in a region. From this point of view, geometry of
numbers can sometimes be applied to count the associated algebraic objects. This
approach has been applied successfully by Davenport and Heilbronn [17] to count the
density of discriminants of cubic fields (the number of cubic fields of discriminant
X asymptotically in X). Bhargava [2, 3] used this approach to count the density of
discriminants of quartic and quintic fields whose Galois closure has group S4 or S5,
respectively.

One can also use a reduction theory to choose representative lattice points for each
algebraic object. This has been very useful for doing computations with the algebraic
objects in the parametrization. Binary quadratic forms, with their reduction theory,
have long been the basis of computations made about ideal classes in quadratic rings
(see [16]). Binary cubic forms are also used to make computations with cubic rings
and fields, such as tables of all cubic fields up to some large discriminant (see [1]).

We can also take a more abstract geometric view of the orbit spaces that param-
etrize algebraic objects. For example, the stack [A4/GL2] is isomorphic to the moduli
stack of cubic rings over a base scheme. From this point of view, these parametriza-
tion spaces are like moduli spaces in geometry, except that their points correspond
to algebraic objects. One naturally then works over an arbitrary base scheme S, and
then looks for a geometric representation of a functor that gives certain algebraic data
over S (for example, a locally free OS-algebra of rank n, a module for that algebra,
and perhaps some other data). This is the point of view we take in this thesis. We
prove results mostly over an arbitrary base scheme S that are functorial in the base.
We also give geometric constructions of the algebraic objects from their associated
forms.

The results described above about the rings and ideal classes parametrized by
binary n-ic forms and the parametrization of all ideal classes in rings associated to
binary n-ic forms are proven over a general base scheme S. Our geometric approach
allows us to give a totally general statement of Gauss composition, the parametriza-
tion of ideal classes in quadratic rings by binary quadratic forms, over any base
scheme (Chapter 2). It also allows us to generalize Bhargava’s parametrization of
quartic rings to a moduli space for locally free OS-algebras of rank 4, along with
cubic resolvent algebras, over a base scheme S (Chapter 6). Casnati and Ekedahl
[13] have given a parametrization of Gorenstein degree 4 covers of an integral base
scheme, and Deligne [20] has given a parametrization of “aligned” degree 4 covers of
an arbitrary base scheme. The work of Chapter 6 generalizes these parametrizations
to degree four covers with cubic resolvents over an arbitrary base, and proves that
these constructions are the same as Bhargava’s. We also investigate where special
quartic algebras lie in this moduli space, in particular the ones with quadratic sub-
algebras. Over Z, we see that any quartic order in a field whose Galois closure has
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group D4 will have a quadratic subring, and thus we have a parametrization of such
D4 rings (Chapter 7).

Each chapter in this thesis has a long introduction to orient the reader to the
work of that chapter. The chapters can be read independently, but contain many
references to work in other chapters.
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Chapter 2

Gauss composition over an
arbitrary base

2.1 Introduction

The classical theorems relating binary quadratic forms ax2 +bxy+cy2 with a, b, c ∈ Z
and ideal classes in quadratic rings have seen tremendous application. In this chapter,
we give a generalization of those theorems when Z is replaced by an arbitrary base
ring or scheme (Theorems 2.1.3, 2.5.1, and 2.5.2). We state the classical theorems
now in a modern language.

Theorem 2.1.1. There is a bijectiontwisted GL2(Z)-equivalence classes
of non-degenerate binary quadratic
forms

←→


isomorphism classes of (C, I),
with C a non-degenerate oriented
quadratic ring, and I a full ideal
class of C

 .

This bijection is discriminant preserving, i.e. if f ↔ (C, I) then disc f = discC.

A quadratic ring is a ring that is a free rank 2 Z-module under addition. An ideal
I of a quadratic ring is full if it is rank 2 as a Z-module. (When C is a domain,
full is equivalent to non-zero.) A form or ring is non-degenerate if its discriminant is
non-zero. An oriented quadratic ring is a quadratic ring R with a choice of generator
of R/Z (there are two choices), and an isomorphism of oriented quadratic rings must
preserve this generator. The most subtle issue in Theorem 2.1.1 is the GL2(Z) action.
An element g = ( k `

m n ) acts on a form f(x, y) = ax2 + bxy + cy2 by

g ◦ f =
1

det g
f(kx+ `y,mx+ ny).

We will call this the twisted GL2(Z) action on binary quadratic forms.
It is interesting to note that quadratic rings are in bijection with integers D con-

gruent to 0 or 1 modulo 4; the bijection is given by the discriminant of the quadratic
ring. The condition that the quadratic ring is oriented may seem unnatural, and if
we wish to remove it, we obtain the following theorem.
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Theorem 2.1.2. There is a bijectionGL2(Z) × GL1(Z) equivalence
classes of non-degenerate binary
quadratic forms

←→
isomorphism classes of (C, I), with
C a non-degenerate quadratic ring
and I a full ideal class of C

 .

This isomorphism is discriminant preserving.

In this theorem, GL1(Z) acts on a form by (k) ◦ f = kax2 + kbxy + kcy2. This
allows multiplication of the form by −1. When we also act by GL1(Z), we can change
the GL2(Z) action by any twist without changing the equivalence classes, and so here
we may as well consider the most natural (non-twisted) GL2(Z) action

g ◦ f = f(ax+ by, cx+ dy).

Given that we can remove the oriented condition and use a more natural GL2(Z)
action, Theorem 2.1.2 seems the more natural theorem. In this chapter we will see
how both of these theorems fit into a larger framework, and we will remove the non-
degeneracy condition (see Theorem 2.4.3 over Z).

Theorems 2.1.1 and 2.1.2 are called Gauss composition because they give a com-
position law on binary quadratic forms with the same discriminant, given by mul-
tiplication of ideal classes. Classically, such as in Gauss’s original work [25], it was
more common to work with an SL2(Z) action, but the theorems were similar. When
one works with the SL2(Z) actions (see for example [16, Section 5.2]) then one has
to make adjustments such as only working with the narrow class group or only work-
ing with positive definite quadratic forms (in the definite case). Given this beautiful
and extremely useful correspondence over the integers, one naturally wonders what
happens when the integers are replaced by other rings, or if one is inclined to think
geometrically, when the integers are replaced by the sheaf of functions on another
scheme. In this chapter, we give the Gauss composition correspondence over an ar-
bitrary base scheme S. In the case S = SpecR, we have the correspondence over an
arbitrary base ring R.

We now give the definitions necessary to work over an arbitrary scheme. The
most important change from Z to a scheme S is that previously we allowed the
quadratic form to have variables x and y which generate a free rank 2 Z-module and
thus were acted on by GL2(Z). Over an arbitrary scheme S, we allow the variables
of the binary form to be in a locally free rank 2 OS-module instead of just a free
module. (Over Z all locally free modules are free.) A binary quadratic form over
S is a locally free rank 2 OS-module V and a global section f ∈ Sym2 V . (See the
Notation section at the end of this introduction for some remarks on the notion of
locally free.) Isomorphisms of binary quadratic forms (V, f) and (V ′, f ′) are given
by isomorphisms V → V ′ that send f to f ′. The notion of isomorphism classes of
binary quadratic forms replaces GL2(Z)-equivalence. Over Z, isomorphism classes of
binary quadratic forms correspond exactly to non-twisted GL2(Z) equivalence classes
of binary quadratic forms.

Now, we take a different point of view on our above GL1(Z) action. We could
consider a form f = ax2z+bxyz+cy2z and then view our above GL1(Z) action as the
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invertible changes of coordinates in the z variable (which over Z are just multiplication
by ±1). Then analogously to our above transition to an arbitrary scheme S, we make
the following definition. A linear binary quadratic form over S is a locally free rank 2
OS-module V , a locally free rank 1OS-module L, and a global section f ∈ Sym2 V ⊗L.
Isomorphisms are given by isomorphisms V → V ′ and L → L′ that send f 7→ f ′.
Over Z, isomorphism classes of linear binary quadratic forms correspond exactly to
the GL2(Z) × GL1(Z) equivalence classes described in Theorem 2.1.2. A quadratic
algebra C over S is a locally free rank 2 OS-algebra. A C-module M is traceable if M
is a locally free rank 2 OS-module and if C and M give the same trace map C → OS.
We now are ready to give the main theorem of Gauss composition over an arbitrary
base.

Theorem 2.1.3. There is a bijection{
isomorphism classes of linear bi-
nary quadratic forms/S

}
←→

{
isomorphism classes of (C,M),
with C a quadratic algebra/S, and
M a traceable C-module

}
.

Given (C,M) and a corresponding f ∈ Sym2 V ⊗ L, we have M ∼= V as OS-modules
and

C/OS
∼= ∧2V ∗ ⊗ L∗

as OS-modules. An isomorphism of pairs (C,M) and (C ′,M ′) is given by an iso-
morphism C ∼= C ′ of OS-algebras, and an isomorphism M ∼= M ′ as OS-modules that
respects the C (or C ′) module structure.

In the case when S = Spec Z and we consider only non-degenerate objects, we
recover the classical Theorem 2.1.2. We give a simple and concrete proof of Theo-
rem 2.1.3 in Section 2.2. We also reinterpret the proof in terms of moduli stacks.
Theorem 2.1.3 comes from an isomorphism of moduli stacks parametrizing linear
binary quadratic forms on the one hand and parametrizing quadratic algebras and
their traceable modules on the other. The content of the “isomorphism of moduli
stacks” result is that the bijection of Theorems 2.1.3 commutes with base change of
the scheme S or ring R (when S = SpecR). Moreover, we give explicit descriptions
of the bijection maps in terms of bases for the ring and module (which describe the
map locally on the base scheme) as well as global descriptions of the bijection, both
geometric and algebraic (see Section 2.3).

There has been previous work done to generalize Gauss composition (see [12], [15],
[29], [40]), usually with conditions on the base ring (for example, that it is a Bezout
domain or that 2 is not a zero-divisor), with conditions on the forms and modules (for
example, free, primitive, invertible), or with orientations of the rings or modules. In
this work we are able to give a complete theorem without any such conditions. The
closest previous work is that of Kneser [30], who works over an arbitrary ring and
gives a construction of quadratic algebras and modules from quadratic maps using
Clifford algebras. Kneser mainly studies composition of two modules and does not
formulate a theorem in the style of this work. Lenstra has given a talk [31] based
on Kneser’s work in which he suggested theorems for primitive forms and invertible
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modules in the style of this work. In Section 2.6, we give a closer comparison of our
terminology and results to those of Kneser. Our work introduces definitions and a
framework that are used to study binary forms of degree n in Chapter 3, which gives
bijection theorems in the style of Theorem 2.1.3 for binary forms of degree n. The
global geometric and algebraic constructions of this chapter can be generalized to
binary forms of degree n and are critical to the study of such forms in Chapter 3.
Besides its independent interest, this chapter is an introduction to and motivation for
the results of Chapter 3.

A linear binary quadratic form is primitive if everywhere locally where V and
L are free (and x, y is a basis for V and z is a basis for L), f can be written as
ax2z + bxyz + cy2z, where a, b, c generate the unit ideal in OS. A form over Z is
primitive if its coefficients generate the unit ideal in Z, and over Z, primitive forms
correspond exactly to the invertible ideal classes. We can understand precisely which
modules primitive forms correspond to in general.

Theorem 2.1.4. In the bijection of Theorem 2.1.3, primitive linear binary quadratic
forms correspond to (C,M) for which M is a locally free C-module of rank 1, i.e. an
invertible C-module. If C is a quadratic OS-algebra and M is a locally free C-module
of rank 1, then M is traceable.

Note that if M is locally on S a free C-module of rank 1, then M is locally on C
a free C-module of rank 1. It turns out that the converse is true. If M is locally on
C a free C-module of rank 1, then M is locally on S a free C-module of rank 1.

We can also talk about discriminants of quadratic algebras and linear binary
quadratic forms over S. The discriminant of a quadratic OS-algebra C is a global
section of (∧2C)⊗−2 ∼= (C/OS)⊗−2 given by the determinant of the trace map C ⊗
C → OS. The discriminant of a linear binary quadratic form f ∈ Sym2 V ⊗ L
is a global section of (∧2V ⊗ L)⊗2 which is given locally where V and L are free
by ax2z + bxyz + cy2z has discriminant (b2 − 4ac)((x ∧ y) ⊗ z)2. We can view the
discriminant (in either case) as a pair (N, d), where N is a locally free OS-module of
rank 1 and d ∈ N⊗2, with isomorphisms given by isomorphisms N ∼= N ′ sending d to
d′.

Theorem 2.1.5. In the bijection of Theorem 2.1.3, the isomorphism C/OS
∼= ∧2V ∗⊗

L∗ gives a map (C/OS)⊗−2 ∼= (∧2V ⊗L)⊗2 which maps the discriminant of (C,M) to
the discriminant of f . In other words, the bijection of Theorem 2.1.3 is discriminant
preserving.

We can specialize Theorem 2.1.3 by specifying the locally free rank 1 module L (see
Section 2.5). This allows us to give a correspondence for binary quadratic forms over
an arbitrary scheme and modules of quadratic algebras. As another specialization,
we get a version of Theorem 2.1.1 over an arbitrary base.

Theorem 2.1.3 parametrizes traceable modules for quadratic rings over some base,
but the original theorems of Gauss composition are about ideal classes. We can
compare traceable modules and ideal classes. To do this we work over an integral
domain D. An ideal I of a quadratic D-algebra C is full if it is a locally free rank 2
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D-module. Two ideals I and I ′ are equivalent if there are non-zero-divisors c, c′ ∈ C
such that cI = c′I ′, and this equivalence defines ideal classes. Over a domain, an
object is degenerate if its discriminant is zero.

Proposition 2.1.6. When D is a domain, and C is a non-degenerate quadratic D-
algebra, all traceable C-modules are realized as full ideals of C and all full ideals of C
are traceable C-modules. Two full ideals of C are in the same ideal class if and only
if they are isomorphic as modules.

Corollary 2.1.7. When D is a domain, there is a discriminant preserving bijection
isomorphism classes of non-
degenerate linear binary quadratic
forms/D

←→


isomorphism classes of (C, I),
with C a non-degenerate quadratic
algebra/D, and I a full ideal class
of C

 .

Note that we do not require C to be a domain. When C is a degenerate quadratic
D-algebra, there are traceable modules which do not occur as ideals of C. How-
ever, since these modules do correspond to linear binary quadratic forms we see that
traceable modules are naturally included in the most complete theorem.

2.1.1 Outline of the chapter

In Section 2.2, we prove Theorems 2.1.3, 2.1.4, and 2.1.5 and give a local explicit de-
scription of the bijection of Theorem 2.1.3. In Section 2.3, we give a global geometric
construction of (C,M) from a linear binary quadratic form and a global algebraic
construction of a linear binary quadratic form from a pair (C,M). In Section 2.4, we
relate traceable modules to ideals in order to understand Theorem 2.1.3 in terms of
ideals when the base is an integral domain. We also give Theorem 2.1.3 over Z and
see that not all the modules in the theorem are realizable as ideals. In Section 2.5, we
specialize Theorem 2.1.3 to forms f ∈ Sym2 V ⊗L with a given L, and recover a ver-
sion of Theorem 2.1.1 over an arbitrary scheme. Finally, in Section 2.6 we relate our
terminology and results to those of Kneser [30], who worked on Gauss composition
over an arbitrary base ring.

Notation. Given an OS-module P , we let P ∗ denote the OS-module Hom(P,OS),
even when P is also a module for some other OS-algebra. Given a sheaf G on S, we
write x ∈ G to denote that x is a global section of G. We use Symk V to denote the
submodule of V ⊗k that is fixed by the Sk action, and we use Symk V to denote the
usual quotient of V ⊗k. We use P(V ) to denote Proj Sym∗ V .

Normally, in the language of algebra, one says that an R-module M is locally free
of rank n if for all prime ideals ℘ of R, the localization M℘ is free of rank n; in the
geometric language we would describe this situation as “M is free in every stalk.”
However, if we have a scheme S and an OS-module M , we normally say that M is
locally free of rank n if on some open cover of S it is free of rank n; in the algebraic
language this is equivalent to saying that for every prime ideal ℘ of R, there is an
f ∈ R \ ℘ such that the localization Mf is free of rank n. It turns out that over a
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ring, the geometric condition of locally free of rank n is equivalent to being finitely
generated and having the algebraic condition of locally free of rank n ([10, II.5.3,
Theorem 2]). In this thesis, we use the geometric notion of locally free of rank n,
even when working over a ring.

2.2 Proof of Theorem 2.1.3

We give a simple proof of Theorem 2.1.3.

Key Construction. Given a linear binary quadratic form f ∈ Sym2 V ⊗ L, we we
construct C and M as OS-modules as follows:

C = OS ⊕ ∧2V ∗ ⊗ L∗ M = V. (2.1)

Next, we need to specific the algebra and C-module structure of C andM respectively.
First, consider the case then V and L are free such that V = OSx⊕OSy and L = OSz.
We rename (1, 0) and (0, (x∗∧y∗)⊗z∗) of C to 1 and τ . Suppose f = ax2z+bxyz+cy2z.
Now we let 1 be the multiplicative identity of C, and let the rest of the algebra and
module structures be as follows:

τ 2 = −bτ − ac τx = −cy − bx τy = ax

This gives M the structure of a traceable C-module. Also note that disc f = (b2 −
4ac)((x ∧ y)⊗ z)2 = discC.

For a general f , we need to specify the algebra and module structures of C and M
by giving C ⊗ C → C and C ⊗M →M satisfying the axioms of rings and modules.
Since the module of such homomorphisms is a sheaf, it suffices to give the algebra and
module structures locally when V and L are free, which is what we have done above.
To see that the local definitions agree on overlaps, we just check that if we had chosen
different bases for the free V and L that we would have gotten the same algebra and
module structure on C and M . This is a simple computation. Also note that disc f
and discC correspond in the isomorphism (∧2V ⊗ L)⊗2 ∼= (C/OS)⊗−2 because they
correspond locally.

Given a quadratic OS-algebra C and a traceable C-module M we can construct
OS-modules V = M and L = ∧2V ∗ ⊗ (C/OS)∗. In the case that C and M are free
OS-modules, we can choose bases for 1, τ , and x, y for C and M respectively, such
that

τx = −cy − bx and τy = ax

for some a, b, c ∈ OS. (Shifting τ by an element of OS if necessary, we can ensure
that τy is a multiple of a and we call such a basis 1, τ normalized.) If τ 2 = −qτ − r
with q, r ∈ OS, then the traceability condition tells us that q = b and the condition
that τ 2 = −qτ − r tells us that r = ac. From this (C,M) we can construct a form
ax2z + bxyz + cy2z, where z = x∗ ∧ y∗ ⊗ τ̄ ∗ and τ̄ is the image of τ in C/OS.
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Now for an arbitrary (C,M), this construction specifies f ∈ Sym2 V ⊗ L locally
on S where C and M are free OS-modules. To see that the local definitions of f agree
on overlaps, we can do a simple computation to see that if we had chosen a different
basis for M , and a different normalized basis for C, we would get the same form.

The constructions of the above two paragraphs are inverse to each other, because
we see they are locally inverse by construction. Thus we have proved the bijection of
Theorem 2.1.3, as well as Theorem 2.1.5 which says that Theorem 2.1.3 is discriminant
preserving.

2.2.1 Primitive forms

If we had a form such that V and L were free as above and f = ax2z+bxyz+cy2z with
a, b, c generating OS as an OS-module, then we also have a, a+ b+ c, c generating OS

as an OS-module. We can cover S by subsets Da, Da+b+c, Dc on which a, a+b+c, c are
invertible respectively. By changing the basis of V on Da+b+c and Dc we can assume
that a is invertible in each open subset. By changing the basis of V again, we can
assume that a = 1. When a = 1, we see that M , as given by the Key Construction,
is a free rank 1 C-module.

On the other hand, if C is a free OS-module and if M is a free C-module of rank
1, then we can choose a OS-module basis x and y of M and a OS-module basis 1, τ
of C such that

τ 2 = −bτ − c, τx = −cy − bx and τy = x

with b, c ∈ OS. Such a (C,M) gives a form x2z + bxyz + cy2z, which is primitive.
So we see that in the bijection of Theorem 2.1.3, primitive forms correspond exactly
to (C,M) such that locally on S, we have M a free C-module of rank 1. Note that
any module which is locally on S a free C-module of rank 1 is traceable. Thus we
conclude that in the bijection of Theorem 2.1.3, primitive forms correspond to M
which are locally on S free C-modules of rank 1, proving Theorem 2.1.4

2.2.2 Moduli stacks

Another way to see the proof of Theorem 2.1.3 is as follows.

Theorem 2.2.1. There is an equivalence of moduli stacks between the moduli stack
of linear binary quadratic forms and the moduli stack of pairs (C,M) where C is a
quadratic algebra and M is a traceable C-module.

Proof. This is just another way of formalizing the above argument. We can rigidify
the two moduli problems of the theorem. We have that A3 is the moduli scheme FB

of linear binary quadratic forms (V, L, f) on S with given V ∼= OS
2 and L ∼= OS.

This is parametrizing linear binary forms with V and L free and with chosen bases.
Also, we saw above that A3 is the moduli scheme MB of pairs (C,M) where C is a
quadratic OS-algebra, M is a traceable C-module, and we have given isomorphisms
C/OS

∼= OS and M ∼= OS
2. This is parametrizing quadratic OS-algebras C with
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traceable modules M , with C/OS and M free and with chosen bases. An element
g ∈ GL2 acts on the isomorphisms of M and V with OS

2 by composing with g
and acts on the isomorphism C/OS

∼= OS by composing with det g−1. An element
g ∈ GL1 acts on the isomorphism C/OS

∼= OS by composing with g−1. This gives an
action of the group scheme GL2×GL1 on both of the rigidified moduli spaces. The
Key Construction of (C,M) from the universal form gives us FB

∼= MB which is
equivariant for the GL2×GL1 actions. Thus we have an equivalence of the quotient
stacks by GL2×GL1, which are the moduli stacks in this theorem.

The bijection of Theorem 2.1.3 is a corollary of this theorem by comparing S
points of the two moduli stacks.

2.3 Global descriptions of the bijection

We have proven Theorem 2.1.3, and the maps in the bijection are given locally in a
simple and completely explicit form by the Key Construction. We wish now to give
global descriptions of the maps in each direction in our bijections.

A linear binary quadratic form f over S defines a closed subscheme Sf of P(V ).
We let O(k) denote the usual sheaf on P(V ) and let OSf

(k) denote the pullback of
O(k) to Sf . The global functions of Sf give an OS-algebra and the global sections of
OSf

(1) give a module for that algebra. Whenever S = SpecR and f is not a zero-
divisor, this algebra and module are the (C,M) given locally by the Key Construction.
When, for example, f = 0, the global functions of Sf are OS, which is not a quadratic
OS-algebra. In order to extend these simple and natural constructions of C and M
to f that may be zero or zero divisors, we use cohomology. In the case of binary
cubic forms, such a construction of the ring C was given by Deligne in a letter to
Gan, Gross, and Savin [19].

Global Construction of Ring and Ideal. Let π : P(V )→ S. We can construct

C := H0Rπ∗

(
O(−2)⊗ π∗L∗ f→ O

)
, (2.2)

and
M := H0Rπ∗

(
O(−1)⊗ π∗L∗ f→ O(1)

)
. (2.3)

Above we are taking the hypercohomology of complexes with terms in degrees -1
and 0. When f is not a zero-divisor, Equations (2.2) and (2.3) just say that C is
the pushforward of the functions of Sf , the subscheme of P(V ) cut out by f , to S.
Also, in this case, M is the pushforward of OSf

(1) to S. This is because when the

map O(k) ⊗ π∗L∗
f→ O(k + 2) is injective, the complex O(k) ⊗ π∗L∗

f→ O(k + 2)
is chain homotopic to O(k + 2)/f(O(k) ⊗ π∗L∗) ∼= OSf

(k) (as a chain complex in
the 0th degree). Thus when f is not a zero-divisor, we have C ∼= π∗(OSf

) and
M ∼= π∗(OSf

(1)).

We see that there is an associative product on the complex O(−2) ⊗ π∗L∗ f→ O
given by the action of O on O(−2), which gives C the structure of a ring. The map of
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O as a complex in degree 0 to the complex O(−2)
f→ O induces OS

∼= R0π∗(O)→ C,
which makes C into an OS-algebra. The C-module structure on M is given by the

following action of the complex O(−2)⊗π∗L∗ f→ O on the complex O(−1)⊗π∗L∗ f→
O(1) :

O ⊗ (O(−1)⊗ π∗L∗)→ O(−1)⊗ π∗L∗ O ⊗ (O(−1)⊗ π∗L∗)→ O(−1)⊗ π∗L∗

(O(−2)⊗ π∗L∗)⊗O(1)→ O(−1)⊗ π∗L∗ (O(−2)⊗ π∗L∗)⊗ (O(−1)⊗ π∗L∗)→ 0,

where all maps are the natural ones.

From the short exact sequence of complexes in degrees -1 and 0

O(k + 2)y
O(k)⊗ π∗L∗ f−−−→ O(k + 2)y
O(k)⊗ π∗L∗

(2.4)

(where each complex is on a horizontal line and k = −1 or −2), we can apply the
long exact sequence of cohomology to obtain the exact sequences

0→ OS → C → (∧2V ∗)⊗ L∗ → 0

0→ V →M → 0.

Thus we have natural isomorphisms of OS-modules

C/OS
∼= (∧2V ∗)⊗ L∗ and V ∼= M (2.5)

as claimed in Theorem 2.1.3. So C and M constructed here have the same OS-module
structure as given in the Key Construction, and we can further see that the algebra
and C-module structures are also the same.

Proposition 2.3.1. The constructions of C and M from a form f given in the Global
Construction commute with base change and are the same as the Key Construction.

Proof. They key to this proof is to compute all cohomology of the pushforward of

the complex C(k) : O(k − 2) ⊗ π∗L∗ f→ O(k) for k = 0, 1. This can be done using
the long exact sequence of cohomology from the short exact sequence of complexes
given in Equation (2.4) above. In particular, C(k) does not have any cohomology
in degrees other than 0. Since k ≤ 1, we have that H0Rπ∗(O(−2 + k)) = 0 and
thus H−1Rπ∗(C(k)) = 0. Since, k ≥ −1 we have that H1Rπ∗(O(k)) = 0 and thus
H1Rπ∗(C(k)) = 0. Moreover, we saw above that H0Rπ∗(C(k)) is locally free. Thus
since all H iRπ∗(C(k)) are flat, by [26, Corollaire 6.9.9], we have that cohomology and
base change commute. Base change respects the induced maps between cohomology
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sheaves that gave C and M algebra and module structures, respectively, as well as
the maps in Equation (2.5).

As in the Key Construction of (C,M) from a form, this construction lifts, using
Equation (2.5), to a map FB →MB of the rigidified moduli spaces. This is because
Equation (2.5) gives a basis for C/OS and M from a basis of V and L. So, it suffices
to check that on the universal linear binary quadratic form this construction gives
the universal pair (C,M). This is proven more generally in an analogue for binary
forms of degree n in Chapter 3.

Global Construction of Form. We now give a global construction of a linear
binary quadratic form from quadratic ring and module. Let C be a quadratic OS-
algebra and M be a traceable C-module. There is a natural map

C/OS ⊗ ∧2
OS
M −→ Sym2M

γ ⊗m1 ∧m2 7→ γm1 ⊗m2 − γm2 ⊗m1
.

We define V = M and L = (C/OS ⊗ ∧2
OS
M)∗ and then the map above gives us an

element f ∈ Sym2 V ⊗ L.

Remark 2.3.2. We can rewrite this construction as

C/OS ⊗ Sym2M −→ ∧2
OS
M

γ ⊗m1m2 7→ γm1 ∧m2
.

Using the isomorphism Sym2M
∗⊗∧2M ∼= Sym2M ⊗∧2M∗, this gives a binary form

of the required form, which one can check is equivalent to the one given above.

This construction clearly commutes with base change. Also, it gives a map FB →
MB of the moduli space of forms with V and L free with chosen basis to the moduli
space of quadratic algebras and traceable modules with C and M free with chosen
basis. We can easily check that on the universal (C,M), this construction gives the
universal linear binary quadratic form, and thus is inverse to the Key Construction.

2.4 Ideals and modules

We now relate traceable modules to ideals. Recall that an ideal I of a quadratic
OS-algebra C is full if it is a locally free rank 2 OS-module. Two ideals I and
I ′ are equivalent if there are non-zero-divisors c, c′ ∈ C such that cI = c′I ′, and
this equivalence defines ideal classes. Over a domain, an object is degenerate if its
discriminant is zero. We prove the following proposition given in the introduction.

Proposition 2.4.1 (Proposition 2.1.6). When D is a domain, and C is a non-
degenerate quadratic D-algebra, all traceable C-modules are realized as full ideals of
C and all full ideals of C are traceable C-modules. Two full ideals of C are in the
same ideal class if and only if they are isomorphic as modules.
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Proof. Let K be the fraction field of D. We have that C ⊗D K is a 2 dimensional
K-algebra, generated by 1 and τ . If M is a traceable C-module, then M ⊗D K is
a 2 dimensional K vector space and a C ⊗D K-module. We can put the action of
τ on M ⊗D K into rational normal form. An easy calculation shows that if C is
non-degenerate then τ does not have any repeated eigenvalues, and so we can assume
that τ acts on M ⊗D K by

(
0 r
1 q

)
and τ 2 = −sτ − t with q, r, s, t ∈ K. Since M is

traceable, we have q = −s and since τ 2 must act on M in the same way as −sτ − t we
have r = −t. Thus, as (C⊗DK)-modules, M ⊗DK ∼= C⊗DK. Since M ⊂M ⊗DK,
we have realized M as a C-submodule of C ⊗D K. Since M is finitely generated as
a C-module, for some non-zero d ∈ D, we have dM ⊂ C. This realizes M as a full
ideal of C.

Let I be a full ideal of C. By definition I is a locally free rank 2 D-module. We
have that I⊗DK ⊂ C⊗DK, and since both are two dimensional K vector spaces, we
must have equality. So I ⊗D K and C ⊗D K give the same trace map from C ⊗D K
to K, which when restricted to C gives the trace maps that I and C give from C to
D. Thus I is traceable.

Clearly two ideals in the same ideal class are isomorphic as modules. Suppose we
have a module isomorphism of two full ideals φ : I → J . Since I ⊗D K ∼= C ⊗D K,
there is some nonzero element d ∈ D ⊂ C such that d ∈ I. We claim that as subsets
of C, φ(d)I = dJ . Suppose we have an element φ(d)x ∈ φ(d)I with x ∈ I. We have
φ(d)x = φ(dx) = dφ(x) since φ is a C-module homomorphism. Thus, φ(d)x ∈ dJ .
Similarly we see that dJ ⊂ φ(d)I. Thus I and J are in the same ideal class.

This allows us to deduce Corollary 2.1.7, which presents the bijection of Gauss
composition in terms of ideals instead of traceable modules. If we further require our
base D to be a Dedekind domain and that C be a domain, then all non-zero ideals of
C are full. When D is a domain with fraction field K, it is easy to check that C is a
domain if and only if f is irreducible over K. Thus we deduce the following corollary.

Corollary 2.4.2. When D is a Dedekind domain with fraction field K, there is a
discriminant preserving bijection

isomorphism classes of non-
degenerate linear binary quadratic
forms/D that are irreducible over
K

←→


isomorphism classes of (C, I),
with C a non-degenerate quadratic
algebra/D and a domain, and I a
non-zero ideal class of C

 .

2.4.1 Theorem 2.1.3 over Z
In Theorem 2.1.3, we remove the condition of non-degeneracy seen in the classical
theorems in order to give the most complete theorem. Over Z, there is only one degen-
erate quadratic ring, but over an arbitrary base, especially one with 0-divisors, much
more can occur in the degenerate locus. Moreover, one may want to study quadratic
rings and their ideal classes under base change, in which case non-degenerate objects
may become degenerate. Over Z, however, when we include the degenerate case, we
are already forced to include a module which is not realized as an ideal. We give here
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Theorem 2.1.3 and its specialization, Theorem 2.5.2, which will be proven in the next
section, when considered over Z.

Theorem 2.4.3. There are discriminant preserving bijections

{
twisted GL2(Z) equivalence classes
of binary quadratic forms over Z

}
←→



isomorphism classes of (C,M),
with C a oriented quadratic
ring/Z, and M a C-module that is
a free rank 2 Z-module such that
C and M give the same trace map
C → R


and

{
GL2(Z) × GL1(Z) equivalence
classes of binary quadratic forms
over Z

}
←→


isomorphism classes of (C,M),
with C a quadratic ring over Z,
and M a C-module which is a free
rank 2 Z-module such that C and
M give the same trace map C → R

 .

The 0 form corresponds to the ring Z[τ ]/τ 2 and the module Zx ⊕ Zy where τ
annihilates x and y. This module cannot be realized as an ideal of Z[τ ]/τ 2, and so
even when the base is Z we see that we must consider modules and not just ideals to
get the most complete theorem.

2.5 Other kinds of binary quadratic forms

We can specialize Theorem 2.1.3 by specifying the locally free rank 1 module L. The
linear binary quadratic forms with a given L correspond to (C,M) as above with

C/OS
∼= ∧2

OS
M∗ ⊗ L∗

as OS-modules. This can be thought us as an L-type orientation of (C,M). For
example, we can fix L = OS to get binary quadratic forms (as defined in Section 2.1),
the analog of binary quadratic forms over Z up to non-twisted GL2(Z)-equivalence.

Theorem 2.5.1. There is a discriminant preserving bijection

{
isomorphism classes of binary
quadratic forms/S

}
←→


isomorphism classes of (C,M),
with C a quadratic algebra/S, M
a traceable C-module, and C/OS

∼=
∧2
OS
M∗

 .

Isomorphisms of (C,M) are required to commute with the isomorphism C/OS
∼=

∧2
OS
M∗.

Another useful choice is L = ∧2V ∗, which is not fixed but rather depends of the
V of the form. A twisted binary quadratic form over S is a locally free rank 2 OS-
module V and a global section f ∈ Sym2 V ⊗∧2V ∗. Isomorphisms of binary quadratic
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forms are given by isomorphisms V → V ′ that preserve the section. This allows us to
specialize to Theorem 2.1.1 because isomorphism classes of twisted binary quadratic
forms over Z correspond exactly to the twisted GL2(Z) equivalence classes of binary
quadratic forms of Theorem 2.1.1.

Theorem 2.5.2. There is a discriminant preserving bijection

{
isomorphism classes of twisted bi-
nary quadratic forms/S

}
←→


isomorphism classes of (C,M),
with C a quadratic algebra/S, M
a traceable C-module, and C/OS

∼=
OS

 .

Isomorphisms of (C,M) are required to commute with the isomorphism C/OS
∼= OS.

The isomorphism C/OS
∼= OS is an orientation of C, and over Z is exactly the

orientation we defined above. So when S = Spec Z, Theorem 2.5.2 gives us the first
bijection of Theorem 2.4.3, and when we consider only non-degenerate objects we
recover the classical Theorem 2.1.1. Of course, we could get similar theorems by
choosing some other L, either fixed or as a function of V , such as (∧2V )⊗k.

The proofs of Theorems 2.5.1 and 2.5.2 are completely analogous to that of The-
orem 2.1.3. Moreover, we have global descriptions of the bijections which can be
read off from the Global Constructions in Section 2.3. For completeness, we give the
moduli stack version of the proofs of the above theorems.

Theorem 2.5.3. There is an equivalence of moduli stacks between the moduli stack
of binary quadratic forms on S and the moduli stack of pairs (C,M) where C is a
quadratic OS-algebra, M is a traceable C-module, and C/OS

∼= ∧2
OS
M∗ is given.

Proof. We can rigidify the two moduli problems of the theorem. We have that A3 is
the moduli scheme F ′B of binary quadratic forms (V, f) on S with given V ∼= OS

2.
Also, from Section 2.2 we know that A3 is the moduli scheme M′

B of pairs (C,M)
where C is a quadratic OS-algebra, M is a traceable C-module, and we have given
isomorphisms C/OS

∼= ∧2
OS
M∗ and M ∼= OS

2. An element of g ∈ GL2 acts on the

isomorphisms ofM and V withOS
2 by composing with g and acts on the isomorphism

C/OS
∼= OS by composing with det g−1. This gives an action of the group scheme

GL2 on both of these rigidifies moduli spaces. The Key Construction of (C,M) from
the universal form gives us F ′B ∼= M′

B which is equivariant for the GL2 actions.
Thus we have an equivalence of the quotient stacks by GL2, which are the moduli
stacks in this theorem.

Theorem 2.5.4. There is an equivalence of moduli stacks between the moduli stack
of twisted binary quadratic forms on S and the moduli stack of pairs (C,M) where C
is a quadratic OS-algebra, M is a traceable C-module, and C/OS

∼= OS is given.

Proof. We can rigidify the two moduli problems of the theorem. We have that A3

is the moduli scheme F ′′B of twisted binary quadratic forms (V, f) of S with given
V ∼= OS

2. Also, from Section 2.2 we know that A3 is the moduli scheme M′′
B of

pairs (C,M) where C is a quadratic OS-algebra, M is a traceable C-module, and we
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have given isomorphisms C/OS
∼= OS and M ∼= OS

2. An element of g ∈ GL2 acts on
the isomorphisms of M and V with OS

2 by composing with g, which gives an action
of the group scheme GL2 on both of these rigidified moduli spaces. The construction
of (C,M) from the universal form gives us F ′′B ∼=M′′

B which is equivariant for the
GL2 actions. Thus we have an equivalence of the quotient stacks by GL2, which are
the moduli stacks in this theorem.

2.6 Relationship to work of Kneser

In this section, we relate the work of this chapter to the work of Kneser [30] on
Gauss composition over an arbitrary base, First we reconcile our terminology with
his. Kneser works over an arbitrary ring R, so throughout this section our base with
always be a ring R.

Kneser works with quadratic maps q : M → N , i.e set maps from M , a locally
free rank 2 R-module, to N , a locally free rank 1 R-module, such that for all r ∈ R
and m ∈ M , we have q(rm) = r2q(m) and q(x + y) − q(x) − q(y) is a bilinear form
on M ×M .

Proposition 2.6.1. Quadratic maps q : M → N in the sense of Kneser described
above are in bijection with linear binary quadratic forms f ∈ Sym2M∗⊗N , where M
and N are R-modules locally free of ranks 2 and 1 respectively.

Proof. Given an f ∈ Sym2M ⊗ N , we naturally obtain a homomorphism from
(Sym2M∗)∗ ∼= Sym2M to N which we call Q. Given m ∈ M we can define
q(m) = Q(m⊗m). We see that for r ∈ R, we have q(rm) = Q(rm⊗ rm) = r2q(m).
Also, q(x + y) − q(x) − q(y) = Q(xy + yx) which is bilinear in x and y. Thus q is a
quadratic map in Kneser’s sense.

Now suppose we have a quadratic map q : M → N in the sense of Kneser. First
assume that M is a free R-module generated by m1 and m2. Then we know that
q(r1m1 + r2m2) = r2

1q(m1) = r2
2q(m2) + r1r2B(m1,m2), where B(x, y) = q(x + y) −

q(x) − q(y) and ri ∈ R. We can give a map Sym2M → N by sending mi ⊗ mi to
r2
i (q(mi) and m1 ⊗ m2 + m2 ⊗ m1 to B(m1,m2). It is easily checked that the map

Sym2M → N does not depend on the choice of basis of M . Now if M is a locally free
R-module, this defines a map Sym2M → N by defining it on local patches where M
is free.

An easy computation for free M shows that these two constructions are inverses
locally on R and thus inverses.

One advantage of the Sym2M⊗N point of view that we take in this thesis is that
it makes it clearer how to base change a form.

Kneser says that a quadratic map is primitive if q(M) generates N as an R-
module. (Kneser actually only gives this definition for N = R.) We can see that
primitivity of a quadratic map is a local condition on R. When M is free with basis
m1,m2, then q(c1m1 +c2m2) = q(m1)c

2
1 +(q(m1 +m2)−q(m1)−q(m2))c1c2 +q(m2)c

2
2.

If q(M) generates N then q(m1), q(m1 +m2) − q(m1) − q(m2), q(m2) must generate
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N as an R-module. Conversely, if q(m1), q(m1 +m2)− q(m1)− q(m2), q(m2) generate
N , then q(m1), q(m1 +m2), q(m2) and thus q(M) generate N as an R-module. The
corresponding linear binary quadratic form (of Proposition 2.6.1) is primitive if and
only if q(m1), q(m1 + m2) − q(m1) − q(m2), q(m2) generate N , which is also a local
condition on R. Thus we conclude the following.

Proposition 2.6.2. A quadratic map in the sense of Kneser is primitive if and only
if the corresponding linear binary quadratic form is primitive.

Kneser works for most of his paper with quadratic maps q : M → R, which
correspond to our binary quadratic forms f ∈ Sym2 V . Kneser gives a global algebraic
construction, using Clifford algebras, of a quadratic R-algebra C and a C-module M
from a quadratic map q : M → R. He sees that primitive maps give invertible
C-modules. He shows this function from quadratic maps to pairs (C,M) is neither
injective nor surjective and he finds the structure of the kernel and image. In a talk
[31], Lenstra suggested that Kneser’s construction could be used to given a theorem
about quadratic maps along the lines of Theorem 2.5.1 restricted to primitive non-
degenerate forms, where the traceable condition does not apepar.

Kneser further gives a global algebraic construction of quadratic maps (corre-
sponding to our linear binary quadratic forms) from (C,M) with M an invertible C-
module. Lenstra [31] suggested an algebraic construction of (C,M) from a quadratic
map which should provide an inverse construction and thus suggested a theorem
along the lines of Theorem 2.1.3 restricted to primitive forms. Lenstra also gave a
construction of a quadratic map from (C,M) similar to ours in Section 2.3.

In this chapter we have removed the conditions of primitivity and non-degeneracy
to give a bijection for all linear binary quadratic forms which required us to consider
non-invertible ideals and introduce the idea of traceable modules. We have given
a geometric description of the construction of (C,M). We have provided a new
framework of linear binary quadratic forms as elements of Sym2 V ⊗L which later in
Chapter 3 allows us to study binary forms of degree n over an arbitrary base. Finally,
we have given proofs of theorems of Gauss composition over an arbitrary base.
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Chapter 3

Rings and ideals parametrized by
binary n-ic forms

3.1 Introduction

When one looks for a parametrizing space for degree n number fields, binary n-ic
forms are a natural guess. It turns out that for n = 3 this guess is correct. We
have that GL2(Q) classes of binary cubic forms are in bijection with isomorphism
classes of cubic Q-algebras and irreducible forms correspond to cubic number fields.
Moreover, an analogous result allows the parametrization of orders in those number
fields; GL2(Z) classes of binary cubic forms are in bijection with isomorphism classes
of cubic rings ([21], see also [17], [24], and [6]). For other n, the space of binary
n-ic forms parametrizes algebraic data that is more subtle than this. It has long
been known that binary quadratic forms parametrize ideal classes in quadratic rings
([25], or see Chapter 2 for a treatment that covers all binary quadratic forms). In
this chapter, we construct the algebraic data associated to a binary n-ic form, and
determine what algebraic structures are in fact parametrized by binary n-ic forms for
all n.

Every binary n-ic form with integral coefficients does have an associated ring. The
rings that come from binary n-ic forms are interesting for many reasons in their own
right, in particular because we have several other tools to understand these rings.
Del Corso, Dvornicich, and Simon have viewed the rings associated to binary n-ic
forms as a generalization of monogenic rings and have described how a prime splits
in a ring associated to a binary n-ic form in terms of the factorization of the form
modulo the prime [18]. They have also given a condition on the form equivalent to
the p-maximality of the associated ring. Simon [37] uses the ring associated to a
binary form to find a class group obstruction equations of the form Cyd = f(x, y)
having integral solutions (where f is the binary form). Chapter 5 of this thesis finds
an explicit moduli space for ideal classes in the rings associated to binary n-ic forms.
Thus, we can work explicitly with these rings, prime splitting in them, and their ideal
classes.

However, there is more data than the associated ring that is canonically associated
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to a binary form, including ideal classes of the ring. Some of these ideal classes have
been constructed for irreducible, primitive forms in [38], [18], and [37]. In Section 3.2,
we give four different ways to construct the associated ring and ideal classes from a
binary form 1) explicitly as a subring of a Q-algebra, 2) by giving the multiplication
and action tables, 3) via a simple geometric construction that works when f 6≡ 0,
and 4) via a more complicated geometric construction that works in all cases. The
geometric constructions answer a question posed by Lenstra at the Rings of Low
Rank Workshop in 2006 about giving a basis-free description of the ring associated
to a binary form. The final geometric construction was originally given in a letter of
Deligne [19] in the case n = 3. We see that for n 6= 2 the ring associated to a form is
Gorenstein if and only if the form is primitive. Also, the ideal classes associated to
the form are invertible if and only if the form is primitive. The geometric construction
is so simple that we give it here.

A binary n-ic form with integer coefficients describes a subscheme of P1
Z which we

call Sf . Let O(k) denote the usual sheaf on P1
Z and let OSf

(k) denote its pullback to
Sf . Also, for a sheaf F , let Γ(F) be the global sections of F . When f 6≡ 0, the ring
associated to the binary n-ic form f is simply the ring of global functions of Sf . The
global sections Γ(OSf

(k)) have an Γ(OSf
)-module structure, and for a binary form

f 6≡ 0 and −1 ≤ k ≤ n − 1, the global sections Γ(OSf
(k)) give a module of the ring

associated to f which is realizable as an ideal class. When n = 2, taking k = 1 we
obtain the ideal associated to the binary quadratic form in Gauss composition. (This
construction gives an ideal even when f is reducible or non-primitive. See Chapter 2
for a complete description of the n = 2 case.) When n = 3, we expect to obtain
canonical modules for the ring since we know binary cubic forms parametrize exactly
cubic rings. When n = 3, by taking k = 1 we obtain the inverse different of the ring
associated to the binary cubic form, and in general taking k = n− 2 gives the inverse
different (see Theorem 3.2.4).

Given a form f , let R be the associated ring, and I the ideal from k = n − 3.
From the exact sequences on P1

Z

0→ O(−n)
f→ O → O/f(O(−n))→ 0

and
0→ O(−3)

f→ O(n− 3)→ O(n− 3)/f(O(−3))→ 0

we obtain exact sequences

0→ Z→ R→ H1(P1
Z,O(−n))→ 0

and
0→ H0(P1

Z,O(n− 3))→ I → H1(P1
Z,O(−3))→ 0.

We have a map R ⊗ I → I from the action of the ring on the ideal, and thus a
map φ : R/Z ⊗H0(P1

Z,O(n − 3)) → H1(P1
Z,O(−3)). It is easy to see that with the

identification of R/Z with H1(P1
Z,O(−n)), that φ is the same as the natural map

H1(P1
Z,O(−n))⊗H0(P1

Z,O(n− 3))→ H1(P1
Z,O(−3)).
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Note if we write V = Z2, then we have H1(P1
Z,O(−n))) = Symn−2 V

∗, and also
H0(P1

Z,O(n− 3)) = Symn−3 V , and H1(P1
Z,O(−3)) = V ∗.

In Section 3.4, we prove that the above algebraic data is precisely the data
parametrized by binary n-ic forms. Given a ring R and an R-module I, we have
that R and I are associated to a binary n-ic form if and only if we can write
R/Z = Symn−2 V

∗ and an exact sequence 0 → Symn−3 V → I → V ∗ → 0 such that
the map Symn−2 V

∗⊗Symn−3 V → V ∗ given by the action of R on I is the same as the
natural map between those Z-modules. It is equivalent to require that R have a Z-
module basis ζ0 = 1, ζ1, . . . , ζn−1 and and I have a Z-module basis α1, α2, β1, . . . , βn−2

such that

the αi coefficient of ζjβk is

{
1 if i+ j + k = n+ 1

0 otherwise.

(This equivalence can be computed by working out the natural map Symn−2 V
∗ ⊗

Symn−3 V → V ∗ in terms of an explicit basis.) It is easy to see that when n = 3
this condition requires that I is isomorphic to R as an R-module. All of the work
in the chapter can be done with an arbitrary base scheme (or ring) replacing Z in
the above, and we now state a precise theorem capturing the above claims over an
arbitrary base.

Let S be a scheme, and OS its sheaf of regular functions. A binary n-ic form
over S is a locally free rank 2 OS-module V , and an element f ∈ Symn V . An
l-twisted binary n-ic form over S is a locally free rank 2 OS-module V , and an
element f ∈ Symn V ⊗ (∧2V )⊗l. A binary n-pair is an OS-algebra R, an R-module
I, an exact sequence 0 → Symn−3Q∗ → I → Q → 0 such that Q is a locally free
rank 2 OS-module, and an isomorphism R/OS

∼= Symn−2Q that identifies the map
R/OS ⊗ Symn−3Q∗ → Q induced from the action of R on I with the natural map
Symn−2Q ⊗ Symn−3Q∗ → Q. In Section 3.3, we give a geometric construction of
rings and modules from (twisted) binary n-ic forms over a scheme S, motivated by
the geometric description given above over Z. Our main theorem is the following,
proved in Section 3.4.

Theorem 3.1.1. For n ≥ 3, we have a bijection between (−1)-twisted binary n-ic
forms over S and binary n-pairs over S, and the bijection commutes with base change
in S. In other words, we have a isomorphism of the moduli stack of (−1)-twisted
binary n-ic forms and the moduli stack of binary n-pairs.

Analogs of Theorem 3.1.1 can be proven for l-twisted binary forms for all l. In
Section 6.2 we give a simple, self-contained proof for −1-twisted cubic forms to show
that over an arbitrary base, binary cubic forms are in correspondence with cubic rings.
We can write the construction of a (−1)-twisted binary n-ic form from a (−1)-twisted
binary n-pair as the evaluation

x 7→ x ∧ φ(xn−2)x

of a degree n map Q→ ∧2Q, where φ is the isomorphism Symn−2Q
∼= R/OS and we

lift x to the ideal I to act on it by R and then take the quotient to Q. It is not clear
a priori that this map is even well-defined, but that will follow from the definition of
a binary n-pair (Lemma 3.4.5).
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3.2 Constructing a ring and modules from a binary

n-ic form over Z

3.2.1 Concrete construction

In this section we will explicitly realize the ring and ideals associated to a binary n-ic
form inside a Q-algebra. Given a binary n-ic form,

f0x
n + f1x

n−1y + · · ·+ fny
n with fi ∈ Z,

such that f0 6= 0, we can form a ring Rf as a subring of Qf := Q(θ)/(f0θ
n + f1θ

n−1 +
· · ·+ fn) with Z-module basis

ζ0 = 1 (3.1)

ζ1 = f0θ

ζ2 = f0θ
2 + f1θ

...

ζk = f0θ
k + · · ·+ fk−1θ

...

ζn−1 = f0θ
n−1 + · · ·+ fn−2θ.

Since f0 6= 0, we have that Rf is a free rank n Z-module, i.e. a rank n ring in the
terminology of Bhargava [6]. Birch and Merriman [8] studied this Z-submodule of Qf ,
and Nakagawa [35, Proposition 1.1] proved that this Z-submodule is a ring (though
Nakagawa worked only with irreducible f , his proof makes sense for all f). Nakagawa
writes down the multiplication table of Rf explicitly as follows:

ζiζj = −
∑

max(i+j−n,1)≤k≤i

fi+j−kζk +
∑

j<k≤min(i+j,n)

fi+j−kζk for 1 ≤ i, j ≤ n− 1, (3.2)

where ζn := −fn. If f0 = 0, we could still use the above multiplication table to define
a rank n ring (see Section 3.2.2). We have the discriminant equality DiscRf = Disc f
(see, for example, [39, Proposition 4]), which is a point of interest in Rf in previous
works (e.g. [35], [39]).

Remark 3.2.1. Throughout this chapter, it will be useful to also make the above
construction with Z replaced by Z[f0, . . . fn], where the fi are formal variables, and
with f = f0x

n + + · · · + fny
n, which we call the universal form. If K is the fraction

field of Z[f0, . . . fn], we can then work in K(θ)/(f0θ
n + f1θ

n−1 + · · · + fn) instead of
Q(θ)/(f0θ

n +f1θ
n−1 + · · ·+fn). The multiplication table in Equation (3.2) still holds,

as Nakagawa’s proof can also be interpreted in this context.

When f0 6= 0, we can also form a fractional ideal If = (1, θ) of Rf (lying in Qf ).
There is a natural GL2(Z) action on binary forms, and the ring Rf and the ideal class
of If are invariant under this action The invariance will follow from our geometric
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construction of this ideal in Section 3.2.3. (See also [35, Proposition 1.2] for a direct
proof of the invariance of Rf , and [39, Théorème 3.4] which, in the case when f is
irreducible and primitive, considers a sequence of ideals Jj, all in the ideal class of If ,
and proves that this ideal class is SL2 invariant.) The powers of If give a sequence of
ideals If

0, If
1, . . . , If

n−1, . . . whose classes are each GL2(Z) invariant. We can write
down the following explicit Z-module bases for If

k for 0 ≤ k ≤ n− 1:

If
k = 〈1, θ, . . . , θk, ζk+1, . . . , ζn−1〉Z, (3.3)

where 〈s1, . . . , sn〉R denotes the R-module generated by s1, . . . , sn. Equivalently to
Equation (3.3), we have for 0 ≤ k ≤ n− 1

If
k = 〈1, θ, . . . , θk, f0θ

k+1, f0θ
k+2 + f1θ

k+1, . . . , f0θ
n−1 + f1θ

n−2 + · · ·+ fn−k−2θ
k+1〉Z.
(3.4)

To be clear, we give the boundary cases explicitly:

If
n−2 = 〈1, θ, . . . , θn−2, f0θ

n−1〉Z
If

n−1 = 〈1, θ, . . . , θn−1〉Z.

Proposition 3.6.1 in the Appendix (Section 3.6) shows that the Z-modules given
above are equal to the ideals we claim. Clearly, the given Z-modules are subsets of
the respective ideals and contain the ideal generators, and so it only remains to check
that the given Z-modules are themselves ideals.

If we look at the Z bases of If
2, If

1, and If
0 given in Equation (3.4), they naturally

lead to considering another Z-module (given by Equation (3.4) when k = −1)

If
# = 〈f0, f0θ + f1, . . . , f0θ

n−1 + f1θ
n−2 + · · ·+ fn−1〉Z. (3.5)

It turns out that If
# is an ideal of Rf (Proposition 3.6.3). This ideal is studied in

the case of f irreducible and primitive as b in [39] and [37] and as B in [18].

Remark 3.2.2. Similarly, we can form the fractional ideals Ik
f and I#

f over the base ring
Z[f0, . . . fn] and with f = f0x

n++ · · ·+fny
n, working inK(θ)/(f0θ

n+f1θ
n−1+· · ·+fn).

The ideals have Z[f0, . . . fn]-module bases as given in Equations (3.3), (3.4), and (3.5),
and these Z[f0, . . . fn]-modules are R ideals by the same proofs as in the Z case.

Given the sequence If
2, If

1, If
0 that led us to define If

# one might expect that
If

# is the same as If
−1. However, it turns out that If is not always invertible. We

do have the following proposition (proven in Proposition 3.6.4 in the Appendix). A
form f is primitive if its coefficients generate the unit ideal in Z.

Proposition 3.2.3. For f 6≡ 0, the ideal class of If is invertible if and only if the
form f is primitive. Also, the ideal class of If

# is invertible if and only if the form
f is primitive. In the case that f is primitive, If

−1 = If
#.

When f is primitive, Simon [38, Proposition 3.2] proved that the ideal classes of
what we call If and If

# are inverses. Note an invertible fractional ideal is invertible
as a module [10, II.5.6, Proposition 11]). Since If is finitely generated, if it has a

23



module inverse then it is projective of rank 1 ([10, II.5.4, Theorem 3]), and since If
is a fractional ideal containing 1, if If is projective of rank 1 then it is an invertible
fractional ideal ([10, II.5.6, Theorem 4]). Of course, for any k > 0, we have If

k is
invertible if and only if If is. Some of the ideal classes If

k are particularly interesting.
For example, we have the following result which we prove in Corollary 3.3.7.

Theorem 3.2.4. The class of If
n−2 is the class of the inverse different of Rf . In

other words, as Rf modules, If
n−2 ∼= HomZ(Rf ,Z).

Simon [37, Proposition 14] independently discovered that when f is primitive
and irreducible that (If

#)2−n is in the ideal class of the inverse different of Rf . In
this chapter, we find that while (If

#)2−n is not naturally constructed as a module,
If

n−2 can be naturally constructed and is always the inverse different, even when f
is reducible, primitive, or even the zero form! When f = 0, we construct If

n−2 as a
module and the above theorem holds, but the module is not realizable as a fractional
ideal of Rf .

Theorem 3.2.4 holds even when the inverse different is not invertible. (Recall
the inverse different can be defined as the Rf -module HomZ(Rf ,Z), which, when the
trace form on Qf is nondegenerate or equivalently the discriminant of f is nonzero,
is realized as the fractional ideal {x ∈ Qf | Tr(xRf ) ⊂ Z}.) When the form f is
primitive, then [(If

#)n−2] is the ideal class of the different of Rf .

Corollary 3.2.5. For n 6= 2 and f 6≡ 0, the ring Rf is Gorenstein if and only if the
form f is primitive.

Proof. It is known that for rank n rings, the condition of Gorenstein is equivalent to
the inverse different being invertible. For the ring Rf , the inverse different is in the
same ideal class as If

n−2 and thus this follows from Proposition 3.2.3.

For maximal orders in number fields, the inverse different is always a square in the
class group [28, Theorem 176]. For the rings Rf , whether they are maximal or not,
the inverse different is always an (n − 2)th power in the class group. For example,
for quartic rings Rf arising from binary quartic forms the inverse different is always
a square in the class group, even in the case when Rf is non-maximal or does not
lie in a number field. Even for maximal quintic orders in number fields, the inverse
different is not always a cube in the class group. However, for Rf from binary quintic
forms, the inverse different is always a cube in the class group.

Remark 3.2.6. When we have a binary form with f0 = ±1, then Rf = Z[θ]/f(θ). Such
rings, generated by one element, are called monogenic. We see that all monogenic
rings are Rf for some binary form f (made by homogenizing the minimal polynomial

of the generating element) . Also, in this case If
k ∼= I#

f
∼= Rf as Rf -modules. In

particular, it follows from Theorem 3.2.4 that the inverse different of any monogenic
ring R is isomorphic to R as an R-module, and thus principal when it is realized as
a fractional ideal (this is proven in [36, III, Proposition 2.4] for maximal monogenic
domains.)
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3.2.2 Explicit multiplication and action tables

If a form f = f0x
n + f1x

n−1y + · · · + fny
n has f0 = 0, but f 6≡ 0, then we can act

by GL2(Z) to take f to a form f ′ with f ′0 6= 0. We then can define the ring Rf

and the Rf ideal classes If and If
# using f ′. Since the ring and ideal classes are

GL2(Z) invariants, it does not matter which f ′ we use. In this section, we give a
more systematic way to define the rings Rf and ideal classes If that works even when
f = 0.

Given a base ring B, if we form a rank n B-module R = Br1 ⊕ . . . Brn, we can
specify a B-bilinear product on R by letting

rirj =
n∑

k=1

ci,j,krk for ci,j,k ∈ B,

and e =
∑n

k=1 ekrk for some ek ∈ B. If this product is commutative, associative, and
e is a multiplicative identity (which is a queston of certain polynomial equalities with
integer coefficients being satisfied by the ci,j,k and ek) then we call the ci,j,k and ek a
multiplication table. A multiplication table gives a ring R with a specified B-module
basis.

Similarly, we can form a free rank m B-module I = Bα1⊕ . . . Bαm, where usually
m is a multiple of n. Then we can specify a B-bilinear product R× I → B by

riαj =
m∑

k=1

di,j,kαk for di,j,k ∈ B.

That this product gives an R-module action on I is a question of certain polynomial
equalities with integer coefficients being satisfied by the di,j,k, ci,j,k and ek, and in
the case they are satisfied we call the di,j,k an action table. An action table gives an
R-module I with a specified B-module basis.

If we want to work directly with forms with f0 = 0 (for example, to deal with the
form f = 0 or to study the form f = x2y+xy2 when we replace Z with Z/(2)), we see
that we can define a ring Rf from the multiplication table given in Equation (3.2).
The conditions of commutativity and associativity on this multiplication table are
polynomial identities in the fi since the construction of R can also be made with the
universal form. The isomorphism class of the ring Rf is a GL2(Z) invariant of the
form f .

Equations (3.3) and (3.5) display Z-module bases of If and If
#. The action of

elements of Rf on these Z-module bases is given by an action table of polynomials
in the fi with Z coefficients. (We can see this, for example, because the proofs of
Propositions 3.6.1 and 3.6.3 work over the base ring Z[f0, . . . , fn].) These polynomials
in the fi formally give an action table because they give an action table over the base
ring Z[f0, . . . , fn]. Thus, we can construct Rf -modules If and If

# first as rank n
Z-modules and then give them an Rf action by the same polynomials in the fi that
make the action tables for If and If

# respectively.
We can also form versions of the powers of If this way, which are Rf -modules

that we call If k for 1 ≤ k ≤ n − 1. We use the action table of If
k with the basis
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of Equation (3.3). The action table has entries that are integer polynomials in the
fi for the same reasons as above. We only have defined the If k as Rf -modules and
not as fractional ideals of Rf . Whenever f 6≡ 0, however, we have also given a a

realization of the If k as the ideal class Ik
f (or I#

f when k = −1). Let If−1 := If
#

and If := If 1. We do not put the k in the exponent because even when f is non-zero
but non-primitive, it is not clear that the module If k is a power of the module If .
When f is primitive, since If is invertible, its ideal class powers are the same as its
module powers.

Whenever Rf and If
k are defined (i.e. when f 6≡ 0), we have the ring isomorphism

Rf
∼= Rf , the Rf -module isomorphism If

k ∼= If k for 1 ≤ k ≤ n − 1, and the Rf -
module isomorphism If

# ∼= If
#. This is because Rf , If k, and If

# are defined by
the multiplication tables and action tables of Rf , If

k, and If
# respectively. The ring

Rf and the modules If k are GL2(Z) invariants of the form f (which will be clear, for
example, from our geometric construction in Section 3.2.3).

3.2.3 Simple geometric construction

For many reasons, we desire a canonical, basis free description of the ring Rf and
Rf -modules If k. We would like to deal more uniformly with the case that f0 = 0 and
see easily the GL2(Z) invariance of our constructions. We would also like to prepare
to give these results over arbitrary base where we will have locally free modules over
the base which are not free. A binary n-ic form f describes a subscheme of P1

Z which
we call Sf . Let O(k) denote the usual sheaf on P1

Z and let OSf
(k) denote its pullback

to Sf . Also, for a sheaf F , let Γ(U,F) be sections of F on U and let Γ(F) be the
global sections of F .

Theorem 3.2.7. For a binary form f 6≡ 0, the ring Γ(OSf
) of global functions

of Sf is isomorphic to Rf . The global sections Γ(OSf
(k)) have an Γ(OSf

)-module
structure, and since Rf

∼= Γ(OSf
), this gives Γ(OSf

(k)) an Rf -module structure. For,

1 ≤ k ≤ n− 1, the global sections Γ(OSf
(k)) are isomorphic to If

k as an Rf -module.

The global sections Γ(OSf
(−1)) are isomorphic to If

# as an Rf -module.

Proof. We can act by GL2(Z) so that f0 6= 0 and fn 6= 0. Then if we write P1
Z =

Proj Z[x, y], we can cover P1
Z with the open subsets Uy and Ux where y and x are

invertible, respectively.

Lemma 3.2.8. If fn 6= 0, then the restriction map

Γ(Uy,OSf
(k))→ Γ(Uy ∩ Ux,OSf

(k))

is injective.

Proof. If
∑

i≥−k aix
k+iy−i 7→ 0, with ai ∈ Z, then

∑
i≥−k aix

k+iy−i =
∑

j djx
jyk−n−jf ,

where dj ∈ Z. Since
∑

i≥−k aix
k+iy−i has no terms of negative degree in x and fn 6= 0,

we conclude that dj = 0 for j < 0. Thus,
∑

i≥−k aix
k+iy−i is 0 in Γ(Uy,OSf

(k)).
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Similarly, since f0 6= 0, we have that Γ(Ux,OSf
(k)) → Γ(Uy ∩ Ux,OSf

(k)) is an
injection.

So we wish to determine the elements of Γ(Uy∩Ux,OSf
(k)) that are in the images

of both Γ(Ux,OSf
(k)) and Γ(Uy,OSf

(k)) First, note that xk, xk−1y, . . . , yk are in the
images of both restriction maps. In Γ(Uy ∩ Ux,OSf

(k)) for 1 ≤ m ≤ n − k − 1, we
have

f0x
k+my−m + · · ·+ fk+m−1xy

k−1 = −fk+my
k − · · · − fnx

k+m−nyn−m,

and thus zm := f0x
k+my−m + . . . fk+m−1xy

k−1 is in the images of both Γ(Ux,OSf
(k))

and Γ(Uy,OSf
(k)).

Now, let p be in both images so that p =
∑

i≥−k aix
k+iy−i =

∑
i≤−k bix

−iyk+i

with ai, bi ∈ Z. If a =
∑

i≥−k aix
k+iy−i ∈ Γ(Uy,OSf

(k)) and b =
∑

i≤0 bix
−iyk+i ∈

Γ(Ux,OSf
(k)), then we have a formal equality a − b =

∑
i cix

iyk−i−nf (in the ring
Z[x, x−1, y, y−1]) where ci ∈ Z. We can assume without loss of generality that ci =
0 for i ≥ 0 because any cix

iyk−i−nf with i non-negative we could just subtract
from the representation a to get another such representation of p in Γ(Uy,OSf

(k)).
Similarly, we can assume that ci = 0 for i ≤ k − n. From the equality a − b =∑−1

i=−n+k+1 x
iyk−i−nf , we can conclude that a is a linear combination of the monomials

xk, xk−1y, . . . , yk plus all the terms
∑−1

i=−n+k+1 x
iyk−i−nf of positive degree in x, and

b is that same linear combination minus all the terms of
∑−1

i=−n+k+1 x
iyk−i−nf of

positive degree in x. The terms of positive degree in x of xiyk−i−nf sum to zn+i−k.
Thus, a ∈

〈
xk, xk−1y, . . . , yk, z1, . . . , zn−1−k

〉
Z.

For k ≥ 0, when we map
〈
xk, xk−1y, . . . , yk, z1, . . . , zn−1−k

〉
Z to Qf via x 7→ θ and

y 7→ 1, the image is the free rank n Z-module
〈
1, θ, . . . , θk, ζk+1, . . . , ζn−1

〉
Z. Thus,

the map is an isomorphism of
〈
xk, xk−1y, . . . , yk, z1, . . . , zn−1−k

〉
Z, the global sections

of OSf
(k), onto If

k. Clearly the Γ(OSf
)-module structure on Γ(OSf

(k)) is the same

as the the Rf -module structure on If
k (including the k = 0 case, which gives the ring

isomorphism Rf
∼= Γ(OSf

)). When k = −1, when we map 〈z1, . . . , zn〉Z to Qf via

x 7→ θ and y 7→ 1, the image is the free rank n Z-module If
#. Similarly we conclude

the theorem for If
#.

Note that though OSf
(k) is always an invertible OSf

-module, when Sf is not
affine, the global sections Γ(OSf

(k)) are not necessarily an invertible Γ(OSf
)-module.

In fact, we know that for nonzero f and 1 ≤ k ≤ n−1 that Γ(OSf
(k)) is an invertible

Γ(OSf
)-module exactly when f is primitive.

Theorem 3.2.9. Let f be a binary form with non-zero discriminant. The scheme Sf

is affine if and only if f is primitive.

Proof. From Theorem 3.2.7 we see that if Sf is affine, then since Γ(OSf
(1)) ∼= If

and OSf
(1) is invertible we must have that If is an invertible Rf -module. Thus

by Proposition 3.2.3, if Sf is affine then f is primitive. To see the picture more
concretely, consider the map a : SpecRf → Spec Z. Since Rf/℘ is finite for any
prime ℘ of Rf that contains a prime p of Z, we have that all points in the fiber of a
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over (p) are closed. However if p | f , then the fiber of Sf over (p) is P1
Z/(p) which has a

non-closed point. We see that Sf has a vertical fiber over (p) when p | f . Moreover,
when p | f we see from the multiplication table (Equation (3.2)) that the fiber of a over
(p) is the non-reduced n-dimensional point Spec Z/(p)[x1, x2, . . . , xn−1]/(xixj)1≤i,j≤n−1

which does not embed into P1
Z.

Now suppose that f is primitive and has non-zero discriminant. We can change
variables so that f0 6= 0 and fn 6= 0. From the standard open affine cover of P1

Z,
we have that Sf is covered by affine opens Uy = Spec Z[x/y]/(f/yn) and Ux =
Spec Z[y/x]/(f/xn). Since Rf is a finitely generated Z-module inside Qf (which
is a product of number fields), we know that the class group of Rf is finite. So, let
m be such that (If

#)m is principal. (Note that by Proposition 3.6.4 we know that
(If

#) is an invertible Rf -module.) Let J = θIf
# which is an integral Rf -ideal. Let

Jm = (b) and (If
#)m = (a), with a, b ∈ Rf . As in the computation in the proof of

Proposition 3.6.4, we see that If
# + J = (1) and thus there exists α, β ∈ Rf such

that αa+ βb = 1. We claim that (Sf )a = Uy as open subschemes of Sf , where (Sf )a

denotes the points of Sf at which a is non-zero.
In the ringQf we have that aθm = bu, where u is a unit in Rf . In Γ(Uy∩Ux,OSf

) ∼=
Qf this translates to a(x

y
)m = bu Thus

a(α+
β

u

(
x

y

)m

) = αa+ β
a

u

(
x

y

)m

= αa+ βb = 1

in Γ(Uy,OSf
) (which injects into Γ(Uy ∩ Ux,OSf

) ∼= Qf ). Therefore a is not zero
at any point of Uy, and so Uy ⊂ (Sf )a. Suppose that we have a point p 6∈ Uy so
that y

x
is 0 at p. Since in Γ(Uy ∩ Ux,OSf

) we have a = bu( y
x
)m, this is also true

in Γ(Ux,OSf
) ∼= Z[y/x]/F (y/x) (which injects into Γ(Uy ∩ Ux,OSf

)). Since we have
p ∈ Ux, then a is also 0 at p and so p 6∈ (Sf )a and we conclude (Sf )a ⊂ Uy. We have
shown (Sf )a = Uy and by switching x and y we see similarly that (Sf )b = Ux. Since
(a, b) is the unit ideal in Γ(Sf ,OSf

) ∼= Rf , and (Sf )a and (Sf )b are each affine, we
have that Sf is affine ([27, Exercise 2.17(b)]).

We could similarly argue over a localization of Z, and thus localizing away from
the Z primes that divide f , the scheme Sf is the same as SpecRf . Over the primes
of Z that divide f , Sf has vertical fibers isomorphic to P1

Z/(p) but SpecRf has a
non-reduced n-dimensional point.

When f is primitive and has non-zero discriminant, then the affineness of Sf and
the invertibility of OSf

(1) implies the invertibility of If , which we knew for primitive
f from Proposition 3.2.3.

3.2.4 Geometric construction by hypercohomology

The description of Rf as the global functions of the subscheme given by f is very
satisfying as a coordinate-free, canonical and simple description of Rf , but still does
not take care of the form f = 0. It may seem at first that f = 0 is a pesky,
uninteresting case, but we will eventually want to reduce a form so that its coefficients
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are in Z/(p), in which case many of our non-zero forms will go to 0. In general we
may want to base change, and the formation of the ring Γ(OSf

) does not commute
with base change. For example, a non-zero binary n-ic all of whose coefficients are
divisible p will give a rank n ring Γ(OSf

) but the reduction f̄ of f to Z/(p) would
give Sf̄ = P1

Z/(p) and thus a ring of global functions that is rank 1 over Z/(p).
We can, however, make the following construction, which was given for n = 3 by

Deligne in a letter [19] to Gan, Gross, and Savin. On P1
Z a binary n-ic form f gives

O(−n)
f→ O, whose image is the ideal sheaf of Sf . We can consider O(−n)

f→ O as
a complex in degrees -1 and 0, and then take the hypercohomology of this complex:

R = H0Rπ∗

(
O(−n)

f→ O
)
. (3.6)

(Here we are taking the 0th right hyper-derived functor of the pushforward by π :
P1

Z → Spec Z on this complex. Alternatively, we pushforward the complex in the
derived category and then take H0. We take hypercohomology since we are applying
the functor to a complex of sheaves and not just a single sheaf.) There is a product

on the complex O(−n)
f→ O given as O ⊗O → O by multiplication, O ⊗O(−n)→

O(−n) by the O-module action, and O(−n) ⊗ O(−n) → 0. This product is clearly
commutative and associative, and induces a product on R. The map of complexes

Oy
O(−n) −−−→ O

induces Z → R. (Of course, H0Rπ∗(O) is just π∗(O) ∼= Z.) It is easy to see that
1 ∈ H0Rπ∗(O) acts as the multiplicative identity.

When f 6≡ 0, the map O(−n)
f→ O is injective, and thus the complex O(−n)

f→ O
is chain homotopy equivalent to O/f(O(−n)) ∼= OSf

(as a chain complex in the 0th
degree). The chain homotopy equivalence also respects the product structure on the
complexes. Thus when f 6≡ 0, we have R ∼= π∗(OSf

), and since Spec Z is affine we
can consider π∗(OSf

) simply as a Z-module isomorphic to Γ(OSf
) ∼= Rf . When f = 0

we get
R = H0Rπ∗(O)⊕R1π∗(O(−n)) ∼= Z⊕ Zn−1

as a Z-module and with multiplication given by (1, 0) acting as the multiplicative
identity and (0, x)(0, y) = 0 for all x, y ∈ Zn−1. This agrees with the definition of R0

given in Section 3.2.2 that used the coefficients of f to give a multiplication table for
Rf . So we see this definition of R is a natural extension to all f of the construction
Γ(OSf

) for non-zero f , especially since R gives a rank n ring even when f = 0.

Theorem 3.2.10. For all binary n-ic forms f , we have

Rf
∼= H0Rπ∗

(
O(−n)

f→ O
)

as rings. (Note that Rf is defined in Section 3.2.2.)
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Proof. The proof of Theorem 3.2.7 shows that Rf
∼= H0Rπ∗

(
O(−n)

f→ O
)

for the

universal form f = f0x
n + f1x

n−1y + · · · + fny
n with coefficients in Z[f0, . . . , fn].

Since both the construction of Rf from the multiplication table in Section 3.2.2 and

the formation of H0Rπ∗

(
O(−n)

f→ O
)

commute with base change (as we will see in

Theorem 3.3.2), and every form f is a base change of the universal form, the theorem
follows.

We have a similar description of the Rf ideal classes (or modules) If k. We can
define Rf -modules for all k ∈ Z:

H0Rπ∗

(
O(−n+ k)

f→ O(k)
)
.

(Here, O(k) is in degree 0 in the above complex.) The Rf -module structure on

H0Rπ∗

(
O(−n+ k)

f→ O(k)
)

is given by the following action of the complex O(−n)
f→ O on the complex O(−n+

k)
f→ O(k) :

O ⊗O(k)→ O(k) O ⊗O(−n+ k)→ O(−n+ k)

O(−n)⊗O(k)→ O(−n+ k) O(−n)⊗O(−n+ k)→ 0,

where all maps are the natural ones.

Theorem 3.2.11. For all binary n-ic forms f and −1 ≤ k ≤ n− 1 we have

If k
∼= H0Rπ∗

(
O(−n+ k)

f→ O(k)
)

as Rf -modules.

Proof. The proof is that same as that of Theorem 3.2.10.

We have only defined the If k for −1 ≤ k ≤ n − 1, though for f 6≡ 0 we have
defined If

k for all k ≥ 0. For f 6≡ 0, we have that the Rf -module isomorphism
If
∼= Γ(OSf

(1)) implies If
⊗k ∼= Γ(OSf

(1))⊗k for all k ≥ 0. Further, if f is primitive,

then If is an invertible ideal and thus If
k ∼= If

⊗k ∼= Γ(OSf
(1))⊗k ∼= Γ(OSf

(k)). The

first isomorphism is because If
k is invertible, the second isomorphism is always true,

and the third isomorphism is because Sf is affine. When f is not primitive, however,
for k > n− 1 it is not clear how to relate If

k to Γ(OSf
(k)).

We have the following nice corollary of Theorems 3.2.10 and 3.2.11.

Corollary 3.2.12. The ring Rf and the Rf -module If are GL2(Z) invariants of
binary n-ic forms f .
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3.3 Constructing rings and modules from a binary

form over an arbitrary base

So far, we have mainly considered binary forms with coefficients in Z. We will now
develop our theory over an arbitrary base scheme S. When S = SpecB we will
sometimes say we are working over a base ring B and we will replace OS-modules
with their corresponding B-modules.

Notation. For an OS-module M , we write M∗ to denote the OS dual module
HomOS

(M,OS). If F is a sheaf, we use s ∈ F to denote that s is a global section
of F . We use SymnM to denote the usual quotient of M⊗n, and SymnM to denote
the submodule of symmetric elements of M⊗n. We have (SymnM)∗ ∼= SymnM∗ for
locally free OS-modules M .

A binary n-ic form over S is a pair (f, V ) where V is a locally free OS-module
of rank 2 and f ∈ Symn V . An isomorphism of binary n-ic forms (f, V ) and (f, V ′)
is given by an OS-module isomorphism V ∼= V ′ which takes f to f ′. We call f a
binary form when n is clear from context or not relevant. If V is the free OS-module
OSx⊕OSy we call f a free binary form.

Given a binary form f ∈ Symn V over a base scheme S, the form f determines a
subscheme Sf of P(V ) (where we define P(V ) = Proj Sym∗ V ). Let π : P(V ) → S.
Let O(k) denote the usual sheaf on P(V ) and OSf

(k) denote the pullback of O(k) to
Sf . Then we can define the OS-algebra

Rf := H0Rπ∗

(
O(−n)

f→ O
)
, (3.7)

where O(−n)
f→ O is a complex in degrees -1 and 0. (In section 3.2.4 this point of

view is worked out in detail over S = Spec Z.) The product of Rf is given by the

natural product of the complex O(−n)
f→ O with itself and the OS-algebra structure

is induced from the map of O as a complex in degree 0 to the complex O(−n)
f→ O.

When O(−n)
f→ O is injective, we have

Rf = Γ(OSf
),

i.e. Rf is the ring of global functions of Sf , as in Section 3.2.4. Similarly, we can
define an Rf -module

If k := H0Rπ∗

(
O(−n+ k)

f→ O(k)
)
, (3.8)

for all k ∈ Z. Let If
# := If−1 and If := If 1. Clearly Rf and If k are invariant under

the GL(V ) action on forms in Symn V . Again, when O(−n+ k)
f→ O(k) is injective,

we have
If k = Γ(OSf

(k))
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for all k ∈ Z. The constructions of Rf and If k as Γ(OSf
(k)) are simpler than

the hypercohomological approach, and these constructions give the desired ring and
modules on a large locus of nice forms f .

Example 3.3.1. If B = Z ⊕ Z and (fi) = Z ⊕ {0}, then in P1
Z⊕Z over the first

Spec Z the form f cuts out SpecRp(f), where p(f) is the projection of f onto the first
factor of (Z ⊕ Z)[x, y]. Over the second copy of Spec Z, the form f is 0 and cuts

out all of P1
Z. Here O(−n)

f→ O is not injective because f is a 0 divisor. Thus the

ring Rf := H0Rπ∗(O(−n)
f→ O) is not just the global functions of Sf but also has a

contribution from ker(O(−n)
f→ O).

Unlike the global sections construction, the constructions of Rf and If k for −1 ≤
k ≤ n− 1 commutes with base change.

Theorem 3.3.2. Let f ∈ Symn V be a binary form over a base scheme S. The
construction of Rf and If k for −1 ≤ k ≤ n − 1 commutes with base change. More
precisely, let φ : T → S be a map of schemes. Let φ∗f ∈ Symn φ∗V be the pullback of
f . Then the natural map from cohomology

Rf ⊗OT → Rφ∗f

is an isomorphism of OT -algebras. Also, for −1 ≤ k ≤ n − 1, the natural map from
cohomology

If ⊗OT → Iφ∗f

is an isomorphism of Rφ∗f -modules (where the Rφ∗f -module structure on If ⊗ OT

comes from the (Rf ⊗OT )-module structure.

Proof. The key to this proof is to compute all cohomology of the pushforward of the

complex C(k) : O(−n+k)
f→ O(k). This can be done using the long exact sequence of

cohomology from the short exact sequence of complexes given in Equation (3.12) in the
next section. In particular, C(k) does not have any cohomology in degrees other than
0. Since k ≤ n− 1, we have that H0Rπ∗(O(−n+ k)) = 0 and thus H−1Rπ∗(C(k)) =
0. Since, k ≥ −1 we have that H1Rπ∗(O(k)) = 0 and thus H1Rπ∗(C(k)) = 0.
Moreover, in Section 3.3.1, we see that H0Rπ∗(C(k)) is locally free. Thus since all
H iRπ∗(C(k)) are flat, by [26, Corollaire 6.9.9], we have that cohomology and base
change commute.

In the case that f is a free form, we could have defined Rf as a free rank
n OS-module using the multiplication table given by Equation (3.2) and If k for
−1 ≤ k ≤ n − 1 as a free rank n OS-module using the action tables for the Equa-
tion (3.3) and (3.5) bases. (See Section 3.2.2 for more details.) Both the constructions
from hypercohomology described above and from the multiplication and action tables
commute with base change. Thus by verification on the universal form (the proof of
Theorem 3.2.7 works over Z[f0, . . . , fn]) we see, as in Theorem 3.2.10, that for free
binary forms and −1 ≤ k ≤ n− 1, these two definitions of Rf and If k agree.
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For any l, we can also formulate this theory for l-twisted binary forms f ∈
Symn V ⊗ (∧2V )⊗l, where

Rf := H0Rπ∗

(
O(−n)⊗ (π∗ ∧2 V )⊗−l f→ O

)
, (3.9)

and
If k := H0Rπ∗

(
O(−n+ k)⊗ (π∗ ∧2 V )⊗−l f→ O(k)

)
(3.10)

or

If
′
k := H0Rπ∗

(
O(−n+ k)⊗ (π∗ ∧2 V )

f→ O(k)⊗ (π∗ ∧2 V )⊗l+1
)
. (3.11)

By the projection formula, If
′
k = If k⊗(∧2V )⊗l+1. By an argument analogous to that

of Theorem 3.3.2 we find that these constructions also commute with base change for
−1 ≤ k ≤ n− 1. In the l-twisted case, we can define Sf as the subscheme of P1(V )

defined by the ideal sheaf that is the image of O(−n) ⊗ (π∗ ∧2 V )⊗−l f→ O. Note
that since Symn V ⊗ (∧2V )⊗l ∼= Symn V ∗⊗ (∧2V ∗)⊗−n−l (see Lemmas 3.7.3 and 3.7.4
in the Appendix), the theory of l-twisted binary n-ic forms is equivalent to the theory
of (−n− l)-twisted binary n-ic forms.

3.3.1 Long exact sequence of cohomology

From the short exact sequence of complexes in degrees -1 and 0

O(k)y
O(−n+ k)

f−−−→ O(k)y
O(−n+ k)

(3.12)

(where each complex is on a horizontal line), we have the long exact sequence of
cohomology

H0Rπ∗O(−n+ k)→ H0Rπ∗O(k)→ H0Rπ∗

(
O(−n+ k)

f→ O(k)
)

→ R1π∗O(−n+ k)→ R1π∗O(k).

For k ≤ n−1, we have H0Rπ∗O(−n+k) = 0 and for k ≥ −1 we have R1π∗O(k) =
0. Also, H0Rπ∗O(k) = Symk V and R1π∗O(−n+k) = (Symn−k−2 V )∗⊗(∧2V )∗. Thus
for 1 ≤ k ≤ n− 1 and a binary form f ∈ Symn V , we have the exact sequence

0→ Symk V → If k → (Symn−k−2 V )∗ ⊗ (∧2V )∗ → 0. (3.13)

Thus If k has a canonical rank k + 1 OS-module inside of it (coming from the global
sections xk, xk−1y, . . . , yk ofO(k)), and a canonical rank n−k−1OS-module quotient.
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So we see, for example, that as an OS-module

Rf/OS
∼= (Symn−2 V )∗ ⊗ (∧2V )∗.

Note that if we make the corresponding exact sequence for an l-twisted binary
form f ∈ Symn V ⊗ (∧2V )⊗l we get

0→ Symk V → If k → (Symn−k−2 V )∗ ⊗ (∧2V )⊗−l−1 → 0 (3.14)

or
0→ Symk V ⊗ (∧2V )⊗l+1 → If

′
k → (Symn−k−2 V )∗ → 0. (3.15)

In Section 3.2.1 we have given a multiplication table for an explicit basis of Rf

and an (implicit) action table for an explicit basis of If k. One naturally wonders
how those bases relate to the exact sequences that we have just found. Consider
the universal form f over the base ring B = Z[f0, . . . , fn]. We can use a concrete
construction of Rf and If k in Section 3.2.1. If K is the fraction field of B, then the
concrete constructions of Rf and If k lie in Qf := K(θ)/(f0θ

n + f1θ
n−1 + · · · + fn)

and are given by Equations (3.1) and (3.3).

Proposition 3.3.3. For the universal form f , where V is a free module on x and y,
in the exact sequence of Equation (3.14) or Equation (3.15) (with ∧2V trivialized by
the basis element x ∧ y) we have that

xiyk−i ∈ Symk V is identified with θi ∈ If k for 0 ≤ i ≤ k

and

the dual basis to xn−k−i−1yi−1 ∈ Symn−k−2 V is identified with ζk+i ∈ If k

for 1 ≤ i ≤ n− k − 1.

Proof. For the universal form, the cohomological construction simplifies. We can
replace the complex O(−n+k)→ O(k) on P1

B with the single sheaf O(k)/f(O(−n+
k)). We can then replace Riπ∗ with H i since the base is affine. The short exact
sequence of complexes in Equation (3.12) then simplifies to the short exact sequence
of sheaves

0→ O(−n+ k)
f→ O(k)→ O(k)/f(O(−n+ k))→ 0,

which gives the same long exact sequence leading to Equation (3.13). The identifica-
tion of If k with global sections is at the end of proof of Theorem 3.2.7, and from that
it is easy to see that the map H0(P1

B,O(k)) → H0(P1
B,O(k)/f(O(−n + k))) = If k

sends xiyk−i 7→ θi. To compute the δ map If k → H1(P1
B,O(−n + k)), we use Cech

cohomology for the usual affine cover of P1 and the δ map is the snake lemma map
between rows of the Cech complexes.

In the notation of Theorem 3.2.7, the element ζk+i is identified with the global
section zi. The global function zi pulls back to zi ∈ Γ(Ux,O(k)) × Γ(Uy,O(k))
which maps to f/(xn−k−iyi) ∈ Γ(Ux ∩ Uy,O(k)). This pulls back to 1/(xn−k−iyi) ∈
Γ(Ux∩Uy,O(−n+k)), which in the standard pairing of the cohomology of projective
space (e.g. in [27, III, Theorem 5.1]) pairs with xn−k−i−1yi−1 ∈ H0(P1

B,O(n−k−2)) ∼=
Symn−k−2 V .
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Since the ring Rf acts on If k, it is natural to want to understand this action in
terms of the exact sequences of Equation (3.14). We have the following description,
which can be proved purely formally by the cohomological constructions of every-
thing involved. Alternatively, with the concrete description of the basis elements in
Proposition 3.3.3, one could prove the following by computation.

Proposition 3.3.4. The map Rf/OS⊗Symk V → Symn−k−2 V
∗⊗ (∧2V )⊗−l−1 given

by the action of Rf on If k and the exact sequence of Equation (3.14) is identified
with the natural map (see Lemma 3.7.2 in the Appendix)

Symn−2 V
∗ ⊗ (∧2V )⊗−l−1 ⊗ Symk V → Symn−k−2 V

∗ ⊗ (∧2V )⊗−l−1

under the identification R/OS
∼= Symn−2 V

∗ ⊗ (∧2V )⊗−l−1 of Equation (3.14). The
map Rf/OS ⊗ Symk V ⊗ (∧2V )⊗l+1 → Symn−k−2 V

∗ given by the action of Rf on
If

′
k and the exact sequence of Equation (3.15) is identified with the natural map (see

Lemma 3.7.2 in the Appendix)

Symn−2 V
∗ ⊗ (∧2V )⊗−l−1 ⊗ Symk V ⊗ (∧2V )⊗l+1 → Symn−k−2 V

∗

under the identification R/OS
∼= Symn−2 V

∗ ⊗ (∧2V )⊗−l−1 of Equation (3.14).

3.3.2 Dual modules

For −1 ≤ k ≤ n− 1 we have a map

If
′
k ⊗ If n−2−k → If

′
n−2 → OS. (3.16)

The first map is induced from the map from the product of the complexes used to
define If

′
k and If n−2−k to the complex used to define If

′
n−2. The second map comes

from Equation (3.15).

Theorem 3.3.5. The pairing in Equation (3.16) gives an OS-module map

If
′
k → If

∗
n−2−k,

and this map is an Rf -module isomorphism.

Proof. We will show that this map is an Rf -module isomorphism, by checking on the
universal form. Since all forms are locally a pull-back from the universal form and
these constructions commute with base change, the theorem will follow for all forms.

We use the construction of Rf and If
′
k and If n−2−k in Section 3.2.1. (Note

that for the universal form, we trivialize all ∧2V with the basis x ∧ y and so If
′
k =

If k.) Since the complex used to define If i is chain homotopy equivalent to the sheaf
O(i)/f(O(i−n)), we see that the map If

′
k⊗If n−2−k → If

′
n−2 is just the multiplication

of global sections of O(k)Sf
and O(n−2−k)Sf

to obtain a global section of O(n−2)Sf
.

This can be realized by multiplication of elements of the fractional ideals If k, If n−2−k,
and If n−2 in Section 3.2.1.
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Lemma 3.3.6. Consider the OS-module basis

1, θ, . . . , θk, ζk+1 + fk+1, . . . , ζn−1 + fn−1

for If
′
k. For If n−2−k, consider the OS-module basis of Equation (3.4), but reverse the

order to obtain

f0θ
n−1 + f1θ

n−2 + · · ·+ fkθ
n−k−1, . . . , f0θ

n−k + f1θ
n−k−1, f0θ

n−k−1, θn−2−k, . . . , θ, 1.

These are dual basis with respect to the pairing from Equation (3.16).

Proof. From Proposition 3.3.3, we know that the map φ : If
′
n−2 → OS in Equa-

tion (3.15) sends ζn−1 7→ 1 and θi 7→ 0 for 0 ≤ i ≤ n − 2. The proof of this lemma
then has four cases.

Case 1: We see that θiθj φ7→ 0 if 0 ≤ i ≤ k and 0 ≤ j ≤ n− 2− k.
Case 2: We compute the image of (ζi + fi)(f0θ

j + · · ·+ fj+k+1−nθ
n−k−1) under φ

for k + 1 ≤ i ≤ n− 1 and n− k − 1 ≤ j ≤ n− 1. We have

(ζi + fi)(f0θ
j + · · ·+ fj+k+1−nθ

n−k−1)

=(ζiθ
n−i + fiθ

n−i)(f0θ
j+i−n + · · ·+ fj+k+1−nθ

i−k−1)

=(−fi+1θ
n−i−1 − · · · − fn)(f0θ

j+i−n + · · ·+ fj+k+1−nθ
i−k−1).

Since n − i − 1 + j + i − n = j − 1 ≤ n − 2, we see that (ζi + fi)(f0θ
j + · · · +

fj+k+1−nθ
n−k−1)

φ7→ 0.
Case 3: We compute the image of θi(f0θ

j + · · · + fj+k+1−nθ
n−k−1) under φ for

0 ≤ i ≤ k and n− k − 1 ≤ j ≤ n− 1.

• If i+ j ≤ n− 2, this maps to 0.

• If i+ j = n− 1, this maps to 1.

• If i+ j ≥ n, the product is

f0θ
j+i + · · ·+ fj+k+1−nθ

n−k−1+i = −fj+k+2−nθ
n−k−2+i − · · · − fnθ

i+j−n,

and since n− k − 2 + i ≤ n− 2 it maps to 0.

Case 4: We compute the image of (ζi + fi)θ
j under φ for k + 1 ≤ i ≤ n− 1 and

0 ≤ j ≤ n− 2− k.

• If i+ j ≤ n− 2, this maps to 0.

• If i+ j = n− 1, this maps to 1.

• If i + j ≥ n, the product is (ζi + fi)θ
j = −fi+1θ

j−1 − · · · − fnθ
i+j−n, and since

j − 1 ≤ n− 2 it maps to 0.
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Finally, it is easy to see in the universal case that the pairing gives an Rf -module
homomorphism If

′
k → If

∗
n−2−k, since the pairing factors through multiplication of

the fractional ideal elements.

Corollary 3.3.7. Let f be an l-twisted binary n-ic form over a base scheme S. Then
we have an isomorphism of Rf -modules

If
′
n−2
∼= HomOS

(Rf ,OS)

given by j 7→ (r 7→ φ(rj)) where φ : If n−2 → OS is the map from Equation (3.15).

3.4 Main Theorem for (−1)-twisted binary forms

Let f be a (−1)-twisted binary form over a base scheme S. Let R = Rf , let I = If n−3,
and let I → Q be the canonical quotient of If n−3 from Equation (3.14). So, Q ∼= V ∗.

From Proposition 3.3.4, we know that the map R/OS ⊗ Symn−3Q∗ → Q given by
the action of R on I and the exact sequence of Equation (3.14) is identified with the
natural map Symn−2Q⊗Symn−3Q∗ → Q under the identification R/OS

∼= Symn−2Q
of Equation (3.14).

Definition. A binary n-pair is an OS-algebra R, an R-module I, an exact sequence
0 → Symn−3Q∗ → I → Q → 0 such that Q is a locally free rank 2 OS-module, and
an isomorphism R/OS

∼= Symn−2Q that identifies the map R/OS ⊗ Symn−3Q∗ → Q
induced from the action of R on I with the natural map Symn−2Q⊗Symn−3Q∗ → Q.

Remark 3.4.1. When n = 3, we have that ker(I → Q) ∼= OS and the map Q⊗OS → Q
given by the ring action R/OS ⊗ ker(I → Q) → Q is just the natural one. We can
tensor the exact sequence 0→ OS → R→ R/OS → 0 with ker(I → Q) to show that
R ∼= I as R-modules. We first obtain the action sequence

0→ OS ⊗ ker(I → Q)→ R⊗ ker(I → Q)→ R/OS ⊗ ker(I → Q)→ 0.

The action of R on I gives a map from that sequence to

0→ ker(I → Q)→ I → Q→ 0,

and since the outside maps are isomorphisms, by the 5-Lemma we have R⊗ ker(I →
Q) ∼= I. If k is a basis element for ker(I → Q), then we have the map R→ I given by
r 7→ rk is an isomorphism of OS-modules. Moreover, since r′r 7→ r′rk = r′(rk), this
is also an isomorphism of R-modules. Moreover, the map of complexes above shows
that in this isomorphism OS

∼→ ker(I → Q) and R/OS
∼→ Q. We can conclude that

a twisted binary setup is just equivalent to a cubic ring, i.e. an OS-algebra R such
that R/OS is a locally free rank 2 OS-module.

There are two equivalent formulations of the definition of a twisted binary pair
that can be useful.
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Proposition 3.4.2. An OS-algebra R and and R-module I are in a a binary pair
with Q a free OS-module if and only if R has a OS-module basis ζ0 = 1, ζ1, . . . , ζn−1

and and I has a OS-module basis α1, α2, β1, . . . , βn−2 such that

the αi coefficient of ζjβk is

{
1 if i+ j + k = n+ 1

0 otherwise.

Proof. If Q is free with basis x, y and dual basis ẋ and ẏ , we can explicitly calculate
the natural map Symn−2Q ⊗ Symn−3Q∗ → Q. Let sym(w) of a word w be the sum
of all distinct permutations of w. We have that

sym(xiyn−2−i)⊗ ẋj ẏn−3−j 7→


x if i = j + 1

y if i = j

0 otherwise.

We have ζj ∈ Symn−2Q corresponding to sym(xn−j−1yj−1), and α1 corresponding to
y and α2 corresponding to x, and βk corresponding to ẋk−1ẏn−2−k, and we obtain the
proposition.

Proposition 3.4.3. An OS-algebra R, an R-module I, a locally free rank 2 OS-
module Q that is a quotient of I, and an isomorphism of OS-modules φ : Symn−2Q

∼=
R/OS are in twisted binary pair if and only if

0 −→ Symn−1Q −→ Q⊗ Symn−2Q −→ (ker(I → Q))∗ ⊗ ∧2Q −→ 0
q1q2 · · · qn−1 7→ q1 ⊗ q2 · · · qn−1 7→

q ⊗ q1 · · · qn−2 7→ (k 7→ q ∧ φ(q1 · · · qn−2) ◦ k)

is an exact sequence, where ◦ denotes the action of R on I followed by the quotient
to Q..

Proposition 3.4.3 follows from the following Lemma, proven in Lemma 3.7.5 in
the Appendix (Section 3.7).

Lemma 3.4.4. If Q is any locally free rank 2 OS-module, we have the exact sequence

0 −→ Symn−1Q −→ Q⊗ Symn−2Q −→ Symn−3Q⊗ ∧2Q −→ 0.
q1q2 · · · qn−1 7→ q1 ⊗ q2 · · · qn−1 7→ q2 · · · qn−2 ⊗ (qn−1 ∧ q1)

The following lemma is used to construct a (−1)-twisted binary form from a binary
pair, and is proven in Lemma 3.7.6 in the Appendix (Section 3.7).

Lemma 3.4.5. Let R be an OS-algebra, I be an R-module, Q be a locally free rank
2 OS-module quotient of I, and φ be an isomorphism of OS-modules φ : Symn−2Q

∼=
R/OS. If

Symn−1Q⊗ ker(I → Q) −→ ∧2Q
q1 · · · qn−1 ⊗ k 7→ q1 ∧ φ(q2 · · · qn−1) ◦ k
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is the zero map, then

SymnQ −→ ∧2Q
q1 · · · qn 7→ q1 ∧ φ(q2 · · · qn−1) ◦ q̃n

is well-defined. Here the ◦ denotes the action of R on I followed by the quotient to
Q and q̃ denotes a fixed splitting Q→ I. In particular the map SymnQ→ ∧2Q does
not depend on the choice of this splitting.

By Proposition 3.4.3, we see that Symn−1Q ⊗ ker(I → Q) → ∧2Q is always the
zero map for a twisted binary pair, and thus we can use Lemma 3.4.5 to construct
a (−1)-twisted binary form in SymnQ∗ ⊗ ∧2Q from a twisted binary pair. We can
write the map of Lemma 3.4.5 as the evaluation

x 7→ x ∧ φ(xn−2)x

of a degree n map Q → ∧2Q. Note this coincides with the map x ∧ x2 as described
in the case of binary cubic forms in [5, Footnote 3].

Remark 3.4.6. For n = 2, note that φ(1) is not 1 ∈ R but rather a generator of R/OS.

Theorem 3.4.7. Let (V, f) be a (−1)-twisted binary form and (R, I) be its associated
twisted binary pair. The (−1)-twisted binary form constructed from (R, I) is f ∈
Symn V ⊗ ∧2V .

Proof. First we note that the (−1)-twisted binary form constructed from (R, I) is a
global section of Symn V ⊗ ∧2V . Then, we can check the theorem locally on S, so
we can assume that f is a free form. Since f then is a pull-back from the universal
form, we can just check the theorem on the universal form f over B = Z[f0, . . . , fn].
Let x, y be the basis of Q ∼= V ∗ and ẋ, ẏ be a corresponding dual basis.

The (−1)-twisted binary n-ic form associated to our binary n-pair is given by

SymnQ −→ ∧2Q
q1 · · · qn 7→ q1 ∧ φ(q2 · · · qn−1) ◦ q̃n

.

Thus for 1 ≤ k ≤ n we have

sym(xkyn−k) 7→ x ∧ φ(sym(xk−2yn−k))x+ x ∧ φ(sym(xk−1yn−k−1))y

+ y ∧ φ(sym(xk−1yn−k−1))x+ y ∧ φ(sym(xkyn−k−2))y

=(ẏ(ζn−k+1x) + ẏ(ζn−ky)− ẋ(ζn−kx)− ẋ(ζn−k−1y))⊗ (x ∧ y) (3.17)

where by convention sym(xayb) is zero if either a or b is negative and ζi = 0 if i < 1
or i > n − 1. If K is the fraction field of B, then the concrete constructions of Rf

and If n−3 from Section 3.2.1 lie in Qf := K(θ)/(f0θ
n + f1θ

n−1 + · · · + fn) and are
given by Equations (3.1) and (3.3). From Proposition 3.3.3, we know we can can
identify x with the image of ζn−2 and y with the image of ζn−1 in the concrete con-
struction of If n−3. We can further identify 1, θ, . . . , θn−3 with the kernel Symn−3Q∗

of I → Q. Using the basis ζi of Rf and the basis from Equation (3.3) for If n−3,
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we have that the ζn−1 and ζn−2 coordinates of elements in Rf and If n−3 do not de-
pend on whether taken in the Rf basis or If n−3 basis. We can thus compute the
expressions ẏ(ζn−k+1x), ẏ(ζn−ky), ẋ(ζn−kx), ẋ(ζn−k−1y) from Equations (3.2) to prove
the proposition. We have

ẏ(ζn−ky) =

{
−fn−k if k = 1

0 otherwise

ẏ(ζn−k+1x) =

{
fn−k if 3 ≤ k ≤ n

0 otherwise

ẋ(ζn−k−1y) =

{
−fn−k if 0 ≤ k ≤ 1

0 otherwise

ẋ(ζn−kx) =

{
−fn−k if 1 ≤ k ≤ 2

0 otherwise.

In fact, we have the following theorem, which shows that (−1)-twisted binary
forms exactly parametrize twisted binary pairs.

Theorem 3.4.8. For n ≥ 3, we have a bijection between (−1)-twisted binary n-ic
forms over S and binary n-pairs over S, and the bijection commutes with base change
in S. In other words, we have a isomorphism of the moduli stack of (−1)-twisted
binary n-ic forms and the moduli stack of binary n-pairs.

An isomorphism of two (−1)-twisted binary n-ic forms f ∈ Symn V ⊗ ∧2V ∗ and
f ′ ∈ Symn V ′⊗∧2(V ′)∗ is an isomorphism V ∼= V ′ that preserves f . An isomorphism
of two binary n-pairs R, I, Q and R′, I ′, Q′ is given by isomorphisms R ∼= R′, and
I ∼= I ′, and Q ∼= Q′ that respect the exact sequence for I (and I ′) and the maps
R/OS

∼= Symn−2Q and R′/OS
∼= Symn−2Q

′.
See Chapter 2 for the full story for binary quadratic forms. In the n = 3 case,

from Remark 3.4.1 we know that a twisted binary 3-pair is equivalent to a cubic ring,
an OS-algebra R such that R/OS is a locally free rank 2 OS-module. Thus we obtain
the following corollary, given in [19] (see also Chapter 6 for a detailed exposition of
this case).

Corollary 3.4.9. We have a bijection between (−1)-twisted binary cubic forms over
S and cubic rings over S, and the bijection commutes with base change in S. In other
words, we have a isomorphism of the moduli stack of (−1)-twisted binary n-ic forms
and the moduli stack of cubic rings.

To prove Theorem 3.4.8 we will rigidify the moduli stacks, and thus we will need
to define based twisted binary pairs.
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3.4.1 Based twisted binary pairs

A based twisted binary pair is twisted binary pair R, I,Q and a choice of basis x, y
of Q such that Q is the free OS-module on x and y. This gives a natural basis of
R/OS as a free rank (n − 1) OS-module, and thus R is a free rank n OS-module.
Let K = (Symn−3Q)∗ = ker(I → Q), and so we have a natural basis for K as a free
rank n− 2 OS-module. Thus I is a free rank n OS-module. However, we do not yet
have canonical bases for R and I as OS-modules. We will pick these using certain
normalizations.

Let ζi = sym(xn−1−iyi−1) for 1 ≤ i ≤ n − 1 be the given basis of R/OS and let
kj for 1 ≤ j ≤ n − 2 be the given basis of K dual to the basis symxj−1yn−2−j of
Symn−3Q. Let ẋ, ẏ ∈ Q∗ be a dual basis of x, y. (Recall that sym(w) for a word w is
the sum of all distinct permutations of w.) Thus from Proposition 3.4.2,

the image of ζikj in Q is


x if i+ j = n− 1

y if i+ j = n

0 otherwise.

(3.18)

Remark 3.4.10. For n = 3, here we see that ζ1k1 = x and ζ2k1 = y, and thus I is a
principal ideal generated by k1. Moreover, this determines the sequence K → I → Q
is just OSk1 → Rk1 → Rk1/OSk1. Therefore a based twisted binary 3 setup is just a
cubic ring with a given basis of R/OS.

Equation (3.18) allows us to choose normalized lifts of x and y to elements of I
that forms a basis along with the given basis of K, and normalized lifts of the ζi to
R to form a basis along with 1. We choose these lifts so that

ẏ(ζix) = 0 for 2 ≤ i ≤ n− 1 (3.19)

by changing the lift x by an appropriate multiple of kn−i. We then specify that

ẋ(ζix) = 0 for 1 ≤ i ≤ n− 1 (3.20)

by changing the lift of ζi by an appropriate multiple of 1. Finally, we specify that

ẏ(ζiy) = 0 for 2 ≤ i ≤ n− 1 (3.21)

by changing the lift of y by an appropriate multiple of kn−i. These specifications
determine a unique lift of x and y to I, and unique lifts of the ζi to R, which we
will refer to now as simply x, y, and ζi. We will now see that with these choices of
normalized bases for R and I, we can determine the action of R and I in terms of a
small number of variables, and these variables will in fact be the coefficients of the
binary form associated to this binary setup.

There are only n+ 1 coordinates we have not determined in the maps ζi : I → Q.
Equation (3.18) gives ζi : K → Q. Our choice of normalization gives all but the
following. Let −ai+1 = ẋ(ζiy) for 1 ≤ i ≤ n − 1. Let a0 = ẏ(ζ1x) and a1 = ẏ(ζ1y).
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These ai specify the map ζi : I → Q.

ζkx ζky

x coordinate 0 for 1 ≤ k ≤ n− 1 −ak+1 for 1 ≤ k ≤ n− 1
y coordinate a0 for k = 1 a1 for k = 1

0 for 2 ≤ k ≤ n− 1 0 for 2 ≤ k ≤ n− 1

We have carefully indexed and signed the ai so that we have the following.

Proposition 3.4.11. The (−1)-twisted binary form associated to the above based
twisted binary setup is

SymnQ −→ ∧2Q
sym(xkyn−k) 7→ an−kx ∧ y

.

Proof. We use the formula

sym(xkyn−k) 7→ (ẏ(ζn−k+1x) + ẏ(ζn−ky)− ẋ(ζn−kx)− ẋ(ζn−k−1y))⊗ (x ∧ y)

from Equation (3.17) , where ẋ and ẏ denote the x and y coordinates respectively
.

Moreover, we find that the coefficients of the associated (−1)-twisted binary form
determine the based twisted binary pair.

Proposition 3.4.12. The maps ζi : R → I and ζi : R → R are determined by the
maps ζi : I → Q and the commutativity relations on the ζi. Each coordinate of the
action and multiplication maps is as a polynomial in the ai with integral coefficients.

Proof. We view each map ζi : R→ I as an n by n matrix Zi. We write Zi(a, b) for the
a, b entry of Zi, which is the ka coordinate of ζikb, where by convention kn−1 = x and
kn = y. We let K be the set of all of entries of these matrices that are determined by
the entries in the last two rows of the matrices as polynomials in the ai (i.e. the maps
ζi : I → Q), as well as as all polynomial combinations of the matrix entries which are
so determined. We will show that the systems of equations given by commutativity
of the ζi determine all the matrix entries from the last two rows. So, by definition we
have Zi(n− 1, k), Zi(n, k) ∈ K for 1 ≤ i ≤ n− 1 and 1 ≤ k ≤ n.

We have two tools that we use to solve for more and more matrix entries.

Lemma 3.4.13. We have

Zi(n− 1− `, k)− Z`(n− 1− i, k) ∈ K, for 1 ≤ i ≤ n− 1 and 1 ≤ ` ≤ n− 1

Proof. Consider the n− 1st rows (x coordinates) of ZiZ` and Z`Zi. Equating the jth
entries in both these rows gives the lemma, where by convention Zi(0, k) = 0.

Lemma 3.4.14. We have

Zi(n− `, k)− Z`(n− i, k) ∈ K, for 1 ≤ ` ≤ n− 1 and 1 ≤ i ≤ n− 1.
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Proof. Consider the nth rows (y coordinates) of ZiZ` and Z`Zi. Equating the jth
entries in both these rows gives the lemma.

We prove, by induction, that all the entries of Zi are in K for 1 ≤ i ≤ n− 1. We
can use i = 0 as the (trivial) base case. Assuming that all the entries of Zi are in K,
we will now show that the entries of Zi+1 are in K. Using Lemma 3.4.13, we see that
that all matrix entries in the n − 1 − ith row are in K. (If i = 0 this is by from the
definition of K.) Using Lemma 3.4.14, we conclude all the entries of Zi+1 are in K,
which completes the induction.

This shows the proposition for the maps ζi : R → I. From Equation (3.18), we
see that since n ≥ 3, each Zi has a 1 in a matrix entry for which all zj for j 6= i have
entry 0. Thus, the action of R on I gives an injection of R into the space on n by n
matrices. To find the ζk coordinate of ζiζj, we just have to look at the matrix entry
of ZiZj where Zk has a 1 and all Z` for ` 6= k have a zero. This shows the proposition
for the maps ζi : R→ I.

Now we prove Theorem 3.4.8.

Proof. The stack of twisted binary n-pairs is the quotient of the stack of based twisted
binary n-pairs by the GL2 action given by change of the basis for Q. Since a based
twisted binary n-pair is given by a0, . . . , an ∈ OS, and we have one such binary pair
for every choice of ai’s (given by the corresponding binary form), the moduli space of
based twisted binary n-pairs is Z[a0, . . . , an], and there is a universal based twisted
binary n-pair.

We have maps between the stack of (−1)-twisted binary n-ic forms and twisted
binary n-pairs in both directions, which lift to the rigidified versions of these stacks,
the stacks of corresponding based objects. Theorem 3.4.7 shows that the map from
forms to pairs back to forms is the identity. We will show that the other composition
of these constructions is the identity by verifying it on the rigidified stacks. If we
start with the universal based twisted binary n-pair, Proposition 3.4.11 shows that
the associated form is the universal binary n-ic form. From the universal binary n-ic
form we construct some based twisted binary n-pair (R, I), and Proposition 3.4.12
shows that (R, I) is determined from the binary form constructed from it–which is
just the universal binary form (since we know going from forms to pairs to forms is
the identity). Since the universal based twisted binary n-pair and (R, I) both give
the same form, by Proposition 3.4.12 they are the same. Thus, we have prove there is
an isomorphism of the moduli stack of (−1)-twisted binary n-ic forms and the moduli
stack of twisted binary n-pairs.

We could have done all the work in this section with If 1, the dual of If
′
n−3, and

considered analogs of binary pairs where the conditions on the module would be OS-
dual to the conditions on I in a binary pair. It turns out some of the constructions
are more natural when working with If

′
n−3 and binary pairs, so we have chosen to

exposit that version.
One could prove analogs of Theorem 3.4.8 for all l-twisted binary forms. We define

an k-twisted binary n-pair is an OS-algebra R, an R-module I, an exact sequence
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0 → Symn−3Q∗ ⊗ (∧2Q)⊗−k → I → Q → 0 such that Q is a locally free rank 2
OS-module, and an isomorphism R/OS

∼= Symn−2Q ⊗ (∧2Q)⊗k that identifies the
map R/OS⊗Symn−3Q∗⊗ (∧2Q)⊗−k → Q induced from the action of R on I with the
natural map Symn−2Q⊗ (∧2Q)⊗k⊗Symn−3Q∗⊗ (∧2Q)⊗−k → Q. Given an l-twisted
binary n-ic form, we get an (l+1)-twisted binary pair from Rf , If

′
n−3, and the exact

sequence from Equation (3.15).
For example, in a k-twisted binary 3-pair we can see that I ∼= R ⊗ ∧2Q⊗−k, by

the same argument that we used to see I was a principal R-module in a binary 3-
pair. So, we see that I is determined uniquely by R. However, since we have that
R/OS

∼= Q ⊗ (∧2Q)⊗k, we see that not all cubic algebras will appear as k-twisted
binary 3-pairs.

3.5 Further questions

For simplicity, we ask further questions over the base Z. One naturally wonders which
rank n rings appear in a binary pair. In other words, which rank n rings have modules
satisfying the conditions of a binary pair? When n = 3, we saw that the answer is all
cubic rings, and each has a unique module and exact sequence that makes a binary
pair. For n = 4, there is another characterization of the answer. In Chapter 4 it is
shown that the quartic rings associated to binary quartic forms are exactly the quartic
rings with monogenic cubic resolvents. The cubic resolvent is a certain integral model
of the classical cubic resolvent field. Are there such connections with resolvents for
higher n?

Simon [39] asks which maximal orders are realized from binary n-ic forms. He
defines the index of a form to be the index of its ring in the maximal order. He
begins a program to compute all forms with a given index. For example, in the
quartic case he uses elliptic curves to compute the forms of index 1 and a certain I
and J (GL2(Z) invariants of a binary quartic form). Simon also shows that there are
no index 1 forms with a root generating a cyclic extension of prime degree at least
5.

3.6 Appendix I: Verifications of Z basis of If
k

Proposition 3.6.1. For f with f0 6= 0 and 1 ≤ k ≤ n − 1, the Rf module If
k is a

free rank n Z-module on the basis given in Equation 3.3.

Lemma 3.6.2. We have

Rfθ
k ⊂

〈
Rf , θ, θ

2, . . . , θk
〉

Z

for all k ≥ 1.

Proof ofLemma 3.6.2. We see that

ζiθ
k = f0θ

k+i + · · ·+ fi−1θ
k+1 if k + i ≤ n− 1
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and

ζiθ
k =θk+i−n(f0θ

n + · · ·+ fi−1θ
n−i+1) if k + i ≥ n

=− θk+i−n(fiθ
n−i + · · ·+ fn)

=− (fiθ
k + · · ·+ fnθ

k+i−n).

Proof of Proposition 3.6.1. So, as a Z-module If
k is generated by the elements

1, θ, . . . , θk, ζk+1, . . . ζn−1

for k ≥ 1. If k ≤ n − 1, then since f0 6= 0, we have that 1, θ, . . . , θk, ζk+1, . . . ζn−1

generate a free Z-module, and thus are a Z-module basis for If
k.

Proposition 3.6.3. The Z-module If
# defined by Equation (3.5) is an ideal.

Proof. Let J = θIf
# = 〈ζ1, ζ2, . . . , ζn−1,−fn〉Z. From the multiplication table given

in Equation (3.2) we see that 〈ζ1, . . . , ζn−1〉Z · 〈ζ1, . . . , ζn−1〉Z ⊂ J . Thus, RfJ ⊂ J
and so J and thus If

# are ideals of Rf .

Proposition 3.6.4. Let f be a non-zero binary n-ic form. Then, the fractional ideal
If is invertible if and only if the form f is primitive. Also, the fractional ideal If

# is
invertible if and only if the form f is primitive. We always have that If

# = (Rf : If ),
where (A : B) = {x ∈ Qf |xB ⊂ A}. In the case that f is primitive, If

−1 = If
#.

Proof. First, we act by GL2(Z) so that we may assume f0 6= 0. Since If
# ⊂ Rf and

θIf
# = 〈ζ1, ζ2, . . . , ζn−1,−fn〉Z ⊂ Rf , we have IfIf

# ⊂ Rf . More specifically, we see
that

IfIf
# = 〈f0, ζ1 + f1, . . . , ζn−1 + fn−1, ζ1, ζ2, . . . , ζn−1,−fn〉Z

= 〈f0, f1, . . . , fn, ζ1, ζ2, . . . , ζn−1〉Z ,

which is equal to Rf if and only if the form f is primitive.
Let x ∈ (Rf : If ). Since 1 ∈ If , we have x ∈ Rf . Write x = x0 +

∑n−1
i=0 xi(ζi + fi)

where the xi ∈ Z. Also, θx ∈ Rf , and θx = x0θ +
∑n−1

i=0 xiζi+1. Thus f0 | x0, which
implies x ∈ If #. We conclude If

# = (Rf : If ).
Suppose If is invertible. Then, its inverse is (Rf : If ) = If

#, which implies

IfIf
# = Rf and the form f is primitive. Suppose I#

f is invertible, then the norm of

IfIf
# is the product of the norms of If and If

#, which is 1. Since IfIf
# ⊂ Rf , we

have that IfIf
# = Rf and the form f is primitive.

3.7 Appendix: Maps of locally free OS-modules

Let S be a scheme. In this appendix we will give several basic facts about maps
between locally free OS-modules.
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Lemma 3.7.1. Let V be a locally free OS module. We have (Symn V )∗ ∼= Symn V ∗.

Proof. We give a map from Symn V ∗ to (Symn V )∗ as follows

V1V2 · · · Vn 7→ (v1 ⊗ · · · ⊗ vn 7→ V1(v1)V2(v2) · · · Vn(vn)).

If we permute the Vi factors, we see the result does not change because the elements
of Symn V that we evaluate on are invariant with respect to this permutation. When
V is free, we see that ěi1 ěi2 · · · ěin is the dual of sym(i1, . . . , in) ∈ Symn V . In this case
this map is an isomorphism and thus it is an isomorphism for all locally free V .

Lemma 3.7.2. Let V be a locally free OS module. Inside of V ⊗a+b the submodule
Syma+b V is a submodule of Syma V ⊗ Symb V . Thus we have a natural map

Syma+b V → Syma V ⊗ Symb V,

which is injective.

Proof. We can check locally where V is free that Syma+b V is a submodule of Syma V ⊗
Symb V . The natural map sends v1 · · · va+b to v1 · · · va⊗ va+1 · · · va+b. This is just the
dual of the natural map Syma V ∗ ⊗ Symb V ∗ → Syma+b V ∗.

Lemma 3.7.3. If L is a locally free rank 1 OS-module and V is a locally free rank n
OS-module, then Symk(V ⊗ L) ∼= Symk V ⊗ L⊗k.

Proof. We have the canonical map

Symk(V ⊗ L) −→ Symk V ⊗ Symk L
(v1 ⊗ `1) · · · (vk ⊗ `k) 7→ v1 · · · vk ⊗ `1 · · · `k

,

which we can check is an isomorphism on free modules and thus is an isomorphism on
locally free modules. Moreover, we have that L⊗k ∼= Symk L. We have the canonical
quotient map L⊗k → Symk L which is clearly an isomorphism for L free of rank 1 and
thus locally free of rank 1.

Lemma 3.7.4. If V is a locally free OS-module of rank two then V ⊗ ∧2V ∗ ∼= V ∗.

Proof. We can define the canonical map which is an isomorphism for free and thus
locally free modules of rank 2.

V ⊗ ∧2V ∗ −→ V ∗

v ⊗ (V1 ∧ V2) 7→ V1(v)V2 − V2(v)V1

Lemma 3.7.5. If Q is any locally free rank 2 OS-module, we have the exact sequence

0 −→ Symn−1Q −→ Q⊗ Symn−2Q −→ Symn−3Q⊗ ∧2Q −→ 0.
q1q2 · · · qn−1 7→ q1 ⊗ q2 · · · qn−1 7→ q2 · · · qn−2 ⊗ (qn−1 ∧ q1)
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Proof. We can check this sequence is exact and thus on free Q generated by x and y.
For a word w in x and y, let sym(w) denote the sum of all distinct permutations of
w. Then, a basis for Symn−1Q is αk = sym(xkyn−1−k) for 0 ≤ k ≤ n− 1. A basis for
Q⊗ Symn−2Q is given by

β0 = y ⊗ sym(yn−2)

βk = x⊗ sym(xk−1yn−1−k) + y ⊗ sym(xkyn−2−k) for 1 ≤ k ≤ n− 2

βn−1 = x⊗ sym(xn−2)

γ` = x⊗ sym(x`yn−2−`) for 0 ≤ ` ≤ n− 3.

We see that in the sequence of the proposition, αi 7→ βi and the γ` map to a basis of
Symn−3Q⊗ ∧2Q.

Lemma 3.7.6. Let R be an OS-algebra, I be an R-module, Q be a locally free rank
2 OS-module quotient of I, and φ be an isomorphism of OS-modules φ : Symn−2Q

∼=
R/OS. If

Symn−1Q⊗ ker(I → Q) −→ ∧2Q
q1 · · · qn−1 ⊗ k 7→ q1 ∧ φ(q2 · · · qn−1) ◦ k

is the zero map, then

SymnQ −→ ∧2Q
q1 · · · qn 7→ q1 ∧ φ(q2 · · · qn−1) ◦ q̃n

is well-defined. Here the ◦ denotes the action of R on I followed by the quotient to
Q and q̃ denotes a fixed splitting Q→ I. In particular the map SymnQ→ ∧2Q does
not depend on the choice of this splitting.

Proof. Since Symn−1Q ⊂ Q ⊗ Symn−2Q as submodules of Q⊗n (see Lemma 3.7.2),
the first map Symn−1Q ⊗ ker(I → Q) → ∧2Q is well-defined. For a given choice of
splittings Symn−2Q→ R and Q→ I, consider the following commutative diagram.

SymnQ

ttiiiiiiiiiiiiiiiii

�� **UUUUUUUUUUUUUUUUU

Symn−2Q⊗ Sym2Q

��

Q⊗ Symn−2Q⊗Q

��

Symn−1Q⊗Q

��

R⊗ Sym2Q

�� **UUUUUUUUUUUUUUUUU
Symn−1Q⊗ I

��

Q⊗R⊗Q // Q⊗R⊗ I

��

Q⊗ Symn−2Q⊗ Ioo

Q⊗Q

��

∧2Q
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To investigate the effect of a different splitting Q → I on the map SymnQ → ∧2Q,
we take the route on the right hand side of the diagram. The difference between the
composite maps from two different splittings will land in the submodule Symn−1Q⊗
ker(I → Q) of the Symn−1Q ⊗ I term, and thus be zero in the final map by the
hypothesis of the lemma. In the diagram, let the maps Symn−1Q⊗Q→ Symn−1Q⊗
I given by the two different splittings be g1 and g2, and let f be the composite
map Symn−1Q ⊗ I → ∧2Q. For x ∈ Symn−1Q ⊗ Q, we consider f ◦ g1(x) − f ◦
g2(x) = f(g1(x) − g2(x)). Since g1(x) − g2(x) ∈ Symn−1Q ⊗ ker(I → Q), we have
f(g1(x) − g2(x)) = 0 by the hypothesis of the lemma, and therefore the composite
map SymnQ→ ∧2Q does not depend on the choice of splitting Q→ I.

To investigate the effect of a different splitting Symn−2Q
∼= R/OS → R on the map

SymnQ→ ∧2Q, we take the route on the left hand side of the diagram. The difference
between the maps from the different splittings will land in the submoduleOS⊗Sym2Q
of the R ⊗ Sym2Q term, and it is easy to see that the difference will be zero in the
composite map. Let k1 and k2 be the maps Symn−2Q⊗Sym2Q→ R⊗Sym2Q given
by two different splittings, and let h be the composite map R⊗ Sym2Q→ ∧2Q. For
x ∈ Symn−2Q⊗Sym2Q, we consider h◦k1(x)−h◦k2(x) = h(k1(x)−k2(x)). We have
that k1(x)− k2(x) ∈ OS ⊗ Sym2Q ⊂ R ⊗ Sym2Q, and clearly h(OS ⊗ Sym2Q) = 0.
Therefore, the composite map SymnQ → ∧2Q does not depend on the choice of
splitting Symn−2Q

∼= R/OS → R.
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Chapter 4

Quartic rings associated to binary
quartic forms

4.1 Introduction

Algebraic objects associated to binary forms have long been studied. Gauss associated
a quadratic ring and ideal class to every binary quadratic form in what is called Gauss
composition. He found that, in fact, binary quadratic forms exactly parametrize ideal
classes of quadratic rings (see [25] for the original source, [16, Section 5.2], and [30]
for more modern treatments, and Chapter 2 for an extremely modern point of view,
which includes all binary quadratic forms, even the zero form!). In 1940, Delone and
Faddeev associated cubic rings to binary cubic forms and found that binary cubic
forms exactly parametrize cubic rings (see [21] for the original, and [24] for a modern
point of view treating all binary cubic forms).

In fact, one can associate a rank n ring (a ring isomorphic to Zn as a Z module) to
a binary n-ic form for any n. These rings have been studied by Birch and Merriman
[8] and Nakagawa [35]. In [18], Del Corso, Dvornicich, and Simon determine the
splitting of the prime p in such a ring in terms of the factorization of the binary n-ic
form modulo pk. In [38], Simon associates an ideal class of the associated ring to a
binary n-ic form, and in [37] this ideal class is applied to study integer solutions to
equations of the form Cyd = F (x, z), where F is a binary form. In Chapter 3, it is
determined exactly what algebraic structures are parametrized by binary n-ic forms,
for all n. This structure is a rank n ring and an ideal class for that ring, such that the
action of the ring on the ideal class satisfies a certain exact sequence (which comes
naturally from geometry). When n = 2, the exact sequence condition is vacuous, and
when n = 3 the condition forces the ideal class to be the unit ideal. In this chapter
we give a different point of view (from Chapter 3) on the algebraic data parametrized
by binary quartic forms. We prove the following main theorem.

Theorem 4.1.1. There is a bijection between GL2(Z)-equivalence classes of binary
quartic forms and isomorphism classes of pairs (Q,C) where Q is a quartic ring and
C is a monogenic cubic resolvent of Q (where isomorphisms are required to preserve
the generator of C modulo Z).
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A binary quartic form is f = f0x
4 + f1x

3y + f2x
2y2 + f3xy

3 + f4y
4 with fi ∈ Z.

We can represent a pair of ternary quadratic forms by a pair of matrices (A,B) such
that

A =

a11
a12

2
a13

2
a12

2
a22

a23

2
a13

2
a23

2
a33

 B =

b11 b12
2

b13
2

b12
2

b22
b23
2

b13
2

b23
2

b33


with aij, bij ∈ Z. We have a map

Ψ : {binary quartic forms} ←→ {pairs of ternary quadratic forms} .

which sends f = f0x
4 + f1x

3y + f2x
2y2 + f3xy

3 + f4y
4 to (A0, Bf ), where

A0 =

 0 −1
2

0
−1

2
0 0

0 0 1

 and Bf =

f4 0 f3

2

0 f0
f1

2
f3

2
f1

2
f2


One then naturally puts an equivalence on pairs of ternary quadratic forms such that
(A,B) ∼ (A,B + nA) for n ∈ Z, and we can also consider

Ψ̄ : {binary quartic forms} −→ {binary quartic forms} / ∼ .

which sends f to (A0, Bf + ZA0). Note that Ψ̄ is injective and its image is all classes
of pairs (A0, B).

From the theory of binary n-ic forms, we know that the form f gives a based
quartic ring Rf over Z. From Bhargava’s parametrization of quartic rings [6], we
know that a pair of ternary quadratic forms gives a based quartic ring Q and a based
cubic resolvent C for that quartic ring. The map Ψ (and also Ψ̄) has been constructed
so as to respect these constructions of based quartic rings.

Lemma 4.1.2. If a based quartic ring Q is associated to the pair Ψ(f) = (A0, Bf )
or any element of the class Ψ̄(f) = (A0, Bf + ZA0), then Rf = Q.

Note that when we have based rings, it makes sense to talk about equality and
not just isomorphism. All of the elements in the class (A0, Bf + ZA0) give the same
based quartic ring and the same cubic resolvent, but with different bases for the cubic
resolvent. Lemma 4.1.2 will be proven in Section 4.7.1. The question remaining is
which quartic rings are associated to binary quartic forms. In Chapter 3, we saw that
one could understand the answer in terms of the existence of a certain kind of ideal
for the quartic ring. In this chapter, we will give another point of view in terms of
cubic resolvents. We will see in Section 4.5, when we give the geometric perspective
on these results, that the two points of views are connected.

The based cubic resolvent associated to a pair (A,B) is given by the binary cubic
form 4 Det(Ax− By). Since 4 det(A0) = −1, any element of Ψ̄(f) has a based cubic
ring given by a cubic form with coefficient −1 of x3. In particular if the cubic ring
C has normalized basis 1, ω, θ, we have that ω2 = −c + bω + θ with b, c ∈ Z, and
thus 1, ω, ω2 is a (not necessarily normalized) Z-module basis of C. We call a ring
monogenic if it is generated by one element as a Z-algebra. A monogenized cubic ring
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is a cubic ring C and an element ω ∈ C/Z such that C = Z[ω]. (Note this condition
does not depend on the lift of ω to C.) An isomorphism of monogenized cubic rings
must preserve the element of C/Z. A monogenized based cubic ring is a based cubic
ring C with basis 1, ω, θ, such that 1, ω, ω2 is a (not necessarily normalized) Z-module
basis for the ring of the same orientation as 1, ω, θ, or equivalently that corresponds
to a binary cubic form with x3 coefficient −1.

Proposition 4.1.3. Any element of Ψ̄(f) corresponds to a quartic ring with a mono-
genized based cubic resolvent.

Corollary 4.1.4. Any ring Rf from a binary quartic form has a monogenic cubic
resolvent.

Most surprisingly, we will see that the converse is true.

Theorem 4.1.5. If a quartic ring Q has a monogenic resolvent R, then there exist
normalized bases of Q and R such that the based pair (Q,R) corresponds to (A0, B)
in the parametrization of quartic rings.

Proof. Recall that g ∈ SL3(Z) acts on A by sending it to gAgt. We prove in
Lemma 4.7.1 that there is only one SL3(Z) class of ternary quadratic forms with
determinant −1/4. Then we can conclude that all such forms are in the SL3(Z) class
of A0. If we have a pair (A,B) corresponding to a quartic ring Q with a mono-
genic cubic resolvent C, we can choose a monogenized basis of C (perhaps changing
the basis of Q to preserve the isomorphism of orientations) so that we can assume
Det(A) = −1/4. Then we can act by an element g ∈ SL3(Z) so that we obtain
A = A0.

Corollary 4.1.6. All quartic rings with monogenic resolvents are the ring Rf con-
structed from some binary quartic form f .

In Section 4.2 we see how the GL2(Z) action on binary quartic forms interacts
with the construction Ψ. This will allow us to prove Theorem 4.1.1 in Section 4.4,
after recording some preliminaries about monogenized cubic rings in Section 4.3. In
Section 4.5, we explain the results of this chapter from a geometric point of view. In
Section 4.6, we see how the GL2(Z) invariants of a binary quartic form are related to
the monogenized cubic resolvent ring of the associated quartic ring.

4.2 GL action on forms

There is a natural (left) GL2(Z) action on binary quartic forms. Let g = ( a b
c d ) be

an element of GL2(Z) and f = F (x, y) be a binary quartic form. Then g ◦ f =
F (ax+ cy, bx+ dy). Note that this action has a kernel of ±1.

There is also the natural (left) SL3(Z) action on pairs of ternary quadratic forms,
given by (A,B) 7→ (gAgt, gBgt).
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Theorem 4.2.1. The map

ρ : GL2(Z) −→ SL3(Z)(
a b
c d

)
7→ 1

ad−bc

 d2 c2 dc
b2 a2 ab
2bd 2ac ad+ bc


is a homomorphism, and gives gives a GL2(Z) action on pairs of ternary quadratic
forms for which Ψ̄ is equivariant. We have im(ρ) ⊂ Stab(A0).

Proof. It is easy to compute that ρ is a homomorphism, and it can also can be
realized as the representation of GL2(Z) on binary quadratic forms (up to a twist
by the determinant). We can check the equivariance of Ψ̄ by computation (which
simplifies on generators ( 0 1

1 0 ), ( 1 0
0 −1 ), and ( 1 1

0 1 ) of GL2(Z)). Let

Y =

 d2 c2 dc
b2 a2 ab
2bd 2ac ad+ bc

 ,

and Y ′ = 1
ad−bc

Y . We can compute formally that Y ′A0(Y
′)t = A0. We can also

compute formally that Y gives the right action on B+A0Z exactly; if Ψ(f) = (A0, B)
and Φ(g ◦ f) = (A0, B

′), then Y (B + A0Z)Y t = B′ + A0Z. Since ad − bc = ±1, we
have that Y (B + A0Z)Y t = Y ′(B + A0Z)(Y ′)t.

The following Lemma, proven in Section 4.7.3, will be crucial to our main theorem.

Lemma 4.2.2. We have im(ρ) = Stab(A0).

4.3 Monogenized cubic rings

Recall that binary cubic forms are in bijection with normalized based cubic rings [24].
(A normalized basis 1, ω, θ of a cubic ring is a Z-module basis such that ωθ ∈ Z. The
bijection between binary cubic forms and normalized based cubic rings is equivariant
under a GL2(Z) action that we specify here. Let g = ( a b

c d ) be an element of GL2(Z)
and f = F (x, y) be a binary cubic form. Then g ◦ f = 1

ad−bc
F (ax + cy, bx + dy). If

ω, θ is a basis of C/Z, then after action by g, the new basis of C/Z is ω′, θ′, where[
ω′

θ′

]
= g [ ω

θ ].
We define N to be the subgroup ( 1 0

∗ 1 ) of GL2(Z). Note that N acts on binary
cubic forms, and fixes the x3 coefficients. Moreover, N acts on normalized based
cubic rings and fixes their first basis element. We also have that N acts on pairs
of ternary quadratic forms, and fixes the first form in the pair. (Recall the action
of g = ( a b

c d ) ∈ GL2(Z) on a pair (A,B) of ternary quadratic forms takes (A,B) to
(aA+ bB, cA+ dB).)

Proposition 4.3.1. We have that N classes of binary cubic forms with x3 coefficient
−1 are in bijection with monogenized cubic rings.
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Proof. We have that binary cubic forms with x3 coefficient −1 are in bijection with
normalized based cubic rings in which 1, ω, ω2 is a basis of the same orientation as
the given basis 1, ω, θ. When we pass to N classes of forms, the correspondence is
to cubic rings with a choice of ω ∈ C/Z and θ ∈ C/(Z ⊕ ωZ) such that 1, ω, ω2 is
a basis of the same orientation as 1, ω, θ. However, given ω, the only such choice of
θ ∈ C/(Z⊕ ωZ) is θ = ω2.

4.4 Main Theorem

In this section, we prove the main theorem of this chapter.

Theorem 4.1.1. There is a bijection between GL2(Z)-equivalence classes of binary
quartic forms and isomorphism classes of pairs (Q,C) where Q is a quartic ring and
C is a monogenized cubic resolvent of Q.

An isomorphism of a pair (Q,C) where C is monogenized, is just an isomorphism
of the underlying pair of quartic ring and cubic resolvent such that the isomorphism
between cubic rings preserves the chosen generator modulo Z.

Proof. So far, we have established a bijection

{binary quartic forms} ←→
{
N classes of pairs (A0, B) of ternary
quadratic forms

}
,

where A0 is the fixed form defined in the Introduction, and B is any ternary quadratic
form. From the parametrization of quartic rings [6], we know that N classes of pairs
(A0, B) of ternary quadratic forms are in bijection with (Q,C), where Q is a based
quartic ring, C is an N class of based cubic resolvent rings, and the resolvent map is
given by (A0, B). Since 4 Det(A0) = −1, the N class of bases of C exactly corresponds
to a monogenization of C. Thus we have a bijection

{binary quartic forms} ←→


(Q,C), where Q is a based quartic
ring, C is a monogenized cubic re-
solvent ring, and the resolvent map
is given by (A0, B)

 .

We know that in this map the GL2(Z) action on binary quartic forms just corresponds
to a SL3(Z) change of basis of Q, and thus gives the same isomorphism class of
(Q,C). Thus the map from GL2(Z) classes of binary quartic forms to isomorphism
classes of (Q,C) is well-defined. We know the map is surjective by Theorem 4.1.5.
To show it is injective, suppose we have two pairs (Q,C) and (Q′, C ′) of quartic
rings with monogenized cubic resolvents. We can choose bases for the quartic rings
so that the resolvent maps are given by (A0, B + A0Z) and (A0, B

′ + A0Z). If we
have an isomorphism of the pairs (Q,C) and (Q′, C ′), it must come from an element
(g, h) ∈ GL2(Z)×GL3(Z) with det(g) det(h) = 1. Since g fixes ω and the orientation
of the cubic ring (as both cubic forms have x3 coefficient −1), it must be an element
of N . Then det(h) = 1, and we see that the isomorphism comes from an element
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of SL3(Z) that fixes A0. By Lemma 4.2.2, such an element is in the image of the ρ
of Theorem 4.2.1, and thus (A0, B + A0Z) and (A0, B

′ + A0Z) come from the same
GL2(Z) class of binary quartic forms.

A quartic ring might have multiple cubic resolvents, only some of which are mono-
genic. In our bijection, the quartic ring appears once for each monogenized resolvent.
If it has a cubic resolvent monogenic in two different ways then it will appear for each
of those monogenizations of the cubic ring. Also, note that the binary quartic form
−x3y+ bx2y2 + cxy3 +dy4 maps to (A0, B) with determinant −x3 + bx2y+ cxy2 +dy3.
Thus every monogenized cubic ring appears as a resolvent of some quartic ring.

4.5 Geometric interpretation

We can give a geometric description of the main theorem, though it still relies on the
same key lemmas. We have a map P1

Z → P2
Z given by the rational normal curve, or

[u : v] 7→ [v2 : u2 : uv]. Note that A0 gives a quadratic form on P2
Z, and the scheme

cut out by this form is the rational normal curve specified above. If we have a pair
(A,B) of ternary quadratic forms, they cut out a subscheme of P2

Z. In nice cases, the
ring of regular functions of this scheme is the quartic ring associated to the pair (and
in general the quartic ring is given by a hypercohomology construction from the pair,
see Chapter 6). When (A,B) is a sufficiently nice pair (e.g. the schemes cut out by
each do not share a component over Q), then it makes sense to talk about the P1

Z
(pencil) of conics through A and B. The cubic resolvent ring associated to (A,B) is
the cubic ring associated to the binary cubic form 4 Det(Ax−By). This is the form
that cuts out the singular locus of the pencil of conics through A and B. So the cubic
ring will be given by the regular functions on the subscheme of singular conics in the
P1

Z of conics through A and B.
A conic given by a symmetric matrix A is singular in a fiber if and only if 4 Det(A)

is 0 in that fiber. To form the matrix A from the conic, we must use 1/2, but
then D = 4 Det(A) is a polynomial with integer coefficients in the coefficients of the
form defining the conic. Even in characteristic 2, the polynomial D gives the exact
condition for singularity. If we have a pair (A0, B) (with B not a multiple of A0),
then the conic given by A0 in the pencil is not singular in any fiber. Thus, the cubic
ring is given by the ring of regular functions of a closed subscheme of P1 \{A0} ∼= A1,
and thus is monogenic.

Conversely, if the cubic resolvent ring associated to a nice (as above) pair (A,B)
is monogenic, then that means that the subscheme of singular conics in the P1

Z of
conics through A and B is disjoint from some particular conic defined over Z, and
we can change basis of the pencil so that it is disjoint from A. (We can see from
the parametrization of cubic rings that whenever a cubic ring is monogenic, in its
realization as the global functions of a subscheme of P1

Z, that subscheme actually sits
inside an A1 ⊂ P1

Z.) This means that A is non-singular. From Lemma 4.7.1, we know
that up to GL3(Z) change of basis on P2

Z, the only such conic is the one cut out by
±A0. So we see that pairs (A0, B) correspond to pairs of quartic rings and cubic
resolvents such that the resolvents are monogenic.
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Moreover, if we have a pair (A0, B), we can pull B back to a form on the P1
Z cut

out by A0 to obtain a binary quartic form (and we obtain the same binary quartic
form with any element of B+A0Z). We can easily compute that every binary quartic
form arises this way. In particular, if B = b11x

2 +b12xy+b13xz+b22y
2 +b23yz+b33z

2,
we see it pulls back to the form b11v

4 + b12u
2v2 + b13uv

3 + b22u
4 + b23u

3v + b33u
2v2

(exactly inverse to the map Ψ defined in the introduction). The elements of GL3(Z)
that fix the P1

Z cut out by A0 setwise restrict to elements of GL2(Z) acting on that P1
Z.

This allows us to see the correspondence of the GL2(Z) action on P1
Z and an action

on P2
Z which fixes the rational normal curve.

If we have a primitive binary quartic form f , then the scheme S cut out by the
form is Spec of the associated ring (Theorem 3.2.9). The ideal associated to the
form gives a line bundle on this scheme, which is equivalent to the data of the map
of S into P1

Z. The scheme S is also a subscheme of P2
Z cut out by (A0, Bf ). We

can see the relationship here between the ideal and the monogenic cubic resolvent.
The ideal gives a map of S to P1

Z, and then by composing with the rational normal
curve map into P2

Z we see from the above story that the cubic resolvent is monogenic.
Conversely, a monogenic cubic resolvent gives a smooth conic on which our degree
four subscheme lies (as in the above story), and pulling back O(1) from this conic
(which is isomorphic to P1

Z) gives the ideal associated to the binary quartic form.

4.6 GL2(Z) invariants of binary quartic forms and

cubic resolvent rings

We have a canonical map Ψ′ which sends f = f0x
4 + f1x

3y+ f2x
2y2 + f3xy

3 + f4y
4 toA0,

f4
f2

6
f3

2
f2

6
f0

f1

2
f3

2
f1

2
2f2

3

 ,

which is equivariant with respect the GL2(Z) action on the binary quartic forms
and the GL2(Z) action on pairs of ternary quadratic forms given in Theorem 4.2.1.
Our previous map Ψ was equivariant only as a map to N classes of pairs of ternary
quadratic forms. However Ψ was defined over Z, and Ψ′ requires the use of 1

3
.

The determinant binary cubic of any element in the image of Ψ′ has x3y coefficient
0. If 3 | f2, then Ψ′ has integral coefficients and its determinant is the unique binary
cubic form to give a (normalized) basis 1, ω, θ such that ω2 − θ ∈ Z, where ω is
the generator of the resolvent cubic associated to the form f . If 3 - f2, then there
is no (normalized) basis 1, ω, θ of the monogenized resolvent cubic C, ω such that
ω2 − θ ∈ Z.

We define N1/3 to be the group of matrices of the form ( 1 0
n 1 ), where n ∈ 1

3
Z.

Proposition 4.6.1. The map from N classes of monogenic binary cubic forms to
N1/3 classes of binary cubic forms is injective.
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Proof. Consider the action of
(

1
k/3 1

)
(where k ∈ Z) on the form −x3 + bx2y+ cxy2 +

dy3. The new coefficient of y3 is d − ck
3

+ bk2

9
− k2

27
, which is only an integer if k is

divisible by 3.

The determinant of Ψ′(f) is

−x3 +
I

3
xy2 − J

27
y3,

where I and J are generators for the GL2(Z) invariants of binary quartic forms, given
by

I

3
= 4f0f4 − f1f3 +

1

3
f 2

2 and
−J
27

=
−8

3
f0f2f4 +

2

27
f 3

2 + f0f
2
3 + f4f

2
1 −

1

3
f1f2f3.

Given a binary quartic form, we have an associated quartic ring and a monogenized
cubic resolvent C with generator ω. We can thus give the monogenized cubic resolvent
canonically by saying it corresponds to the N class of binary cubic forms over Z in
the N1/3 class of −x3 + I

3
xy2 − J

27
y3.

Let r be a root of −x3 + I
3
x − J

27
. Then there is only one Z coset of algebraic

integers in r + 1
3
Z, and it is ω + Z. So, we have found a description for ω in terms of

the GL2(Z) invariants of the binary quartic form. (Note that even if −x3 + I
3
x − J

27

is reducible, we can still make sense of r as an element of Q(r)/(−r3 + I
3
r − J

27
) and

there is only one Z coset in r+ 1
3
Z whose elements generate algebras that are finitely

generated Z-modules.)

4.7 Proofs of key Lemmas

4.7.1 Proof of Lemma 4.1.2

Lemma 4.1.2. If a based quartic ring Q is associated to the pair Ψ(f) = (A0, Bf )
or any element of the class Ψ̄(f) = (A0, Bf + ZA0), then Rf = Q.

Proof. We have a basis ζ1, ζ2, ζ3 of the quartic ring associated to a binary quartic
form as given in Chapter 3. We let ζ ′3 = ζ3 + f3. From Equation (3.2), we have that

ζ2
1 = −f1ζ1 + f0ζ2

ζ1ζ2 = −f2ζ1 +f0ζ
′
3 − f0f3

ζ1ζ
′
3 = − f0f4

ζ2ζ2 = −f3ζ1 − f2ζ2 +f1ζ
′
3 − f1f3 − f0f4

ζ2ζ
′
3 = −f4ζ1 − f1f4

(ζ ′3)
2 = − f4ζ2 +f3ζ

′
3 − f 2

3 − f2f4 .

We let α1 = ζ ′3 and α2 = ζ1 and α3 = ζ2. We then see that the αi satisfy the
multiplication table given in [6, Equations (21) and (23)] for the pair (A0, Bf ).
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4.7.2 Proof of Lemma 4.7.1

Lemma 4.7.1. There is only one SL3(Z) class of ternary quadratic form such that
Det(A) = −1/4.

Proof. Let

A =

a11
a12

2
a13

2
a12

2
a22

a23

2
a13

2
a23

2
a33


represent a ternary quadratic form, and assume Det(A) = −1/4. We will now act on
A by elements of SL3(Z), and abuse notation by calling the resulting form A. As in [9,
Section 5], we can find an S ∈ SL3(Z) such that StAS is semi-reduced, which in par-
ticular means that |a11| ≤ 4

3
|DetA|1/3 < 1 and |a11a22 − a2

12/4| ≤
√

4|a11 Det(A)|/3.
So, a11 = 0 and a12 = 0. Thus −a2

13a22/4 = −1/4. Thus a22 = 1 and a13 = ±1. We
can exchange the second and third rows and columns to obtain a33 = 1 and a12 = ±1,
but that transformation has determinant −1 so we can then multiply the first row
and column by −(±1) and the third row and column by ±1 to obtain a33 = 1 and
a12 = −1. We also have a11 = 0 and a13 = 0. If we let

J =

1 a22 a23

0 1 0
0 0 1


then J tAJ = A0.

4.7.3 Proof of Lemma 4.2.2

Recall the map ρ : GL2(Z)→ SL3(Z) defined in Theorem 4.2.1.

Lemma 4.2.2. We have im(ρ) = Stab(A0).

Lemma 4.2.2 is like the classical fact that over an algebraically closed field, the
elements of PGL3 that fix the rational normal curve setwise are exactly a PGL2 acting
on the curve. However, for our application we need a precise statement over Z and
in the nonprojectivized version.

Proof. Let

X =

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ∈ SL3(Z)
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such that XA0X
t = A0. We obtain the following system of equations of the xij

x2
13 − x11x12 = 0

x2
23 − x11x12 = 0

−x12x21

2
− x11x22

2
+ x13x23 = −1

2

−x12x31

2
− x11x32

2
+ x13x33 = 0

−x22x31

2
− x21x32

2
+ x23x33 = 0

−x32x31 + x2
33 = 1

Let u1 be a square root of x11, and u2 = x13/u1 (which is a square root of x12).
Let u3 be a square root of x21, and u4 = x23/u3 (which is a square root of x22). We
can then rearrange

−x12x21

2
− x11x22

2
+ x13x23 = −1

2
to

−u2
2u

2
3 − u2

1u
2
4 + 2u1u2u3u4 = −1

or
(u2u3 − u1u4)

2 = 1.

Given u1, u2, u3, u4, we have a system of two linear equations in the variables x31, x32,
and x33:

−u2
2x31 − u2

1x32 + 2u1u2x33 = 0

−u2
4x31 − u2

3x32 + 2u3u4x33 = 0

First, we will see that the above system cannot be rank 1. That would imply that
u1u2u

2
3 = u2

1u3u4 and thus unless u1 = 0 or u3 = 0, we have u2u3 = u1u4 which is
impossible since (u2u3 − u1u4)

2 = 1. If u1 = 0, we cannot have u2 = 0 or u3 = 0
since (u2u3 − u1u4)

2 = 1, and for the system to be rank 1, we would have u2
2u

2
3 =

u2
1u

2
4 = 0, which is impossible. If u3 = 0, we cannot have u1 = 0 or u4 = 0 since

(u2u3−u1u4)
2 = 1, and for the system to be rank 1, we would have u2

1u
2
4 = u2

2u
2
3 = 0,

which is impossible.
Since the system is rank 2, there is one dimension of solutions in C3. We see that

[x31, x32, x33] = [2u1u3, 2u2u4, u1u4+u2u3] is a solution, and thus as long as it isn’t the
zero vector, all solutions are scalar multiples of this solution. If [2u1u3, 2u2u4, u1u4 +
u2u3] is zero, without loss of generality say u1 = 0. That implies u2u3 = 0, which
contradicts (u2u3 − u1u4)

2 = 1.
So we have [x31, x32, x33] = k[2u1u3, 2u2u4, u1u4 + u2u3]. We can compute that

the determinant of X is k(u1u4 − u2u3)
3. Thus if X has determinant 1, then

58



k = u1u4 − u2u3 (and k2 = 1). We note that the final equation −x32x31 + x2
33 = 1 is

always satisfied with the xij we have determined. So we have

X =

 u2
1 u2

2 u1u2

u2
3 u2

4 u3u3

2(u1u4 − u2u3)u1u3 2(u1u4 − u2u3)u2u4 (u1u4 − u2u3)(u1u4 + u2u3)

 .

We now wish to show that the ui are integral. Now, assume that X is not in the
image of GL2(Z) under ρ. Since ( −1 0

0 1 ) maps to−1 0 0
0 −1 0
0 0 1

 ,

we can assume that x11 is non-negative and that x21 is non-negative. We see that the
ui are all algebraic integers; more precisely they are the square roots of integers. If
u1 = 0 (respectively, u4 = 0), then u2 and u3 must be non-zero and u2u3 = ±1. Since
u2

3 is non-negative, we have that u2 and u3 are both integers. Since u2u4 (respectively,
u1u3) is rational, this implies u4 (respectively, u1) is rational and thus an integer.

If u2 = 0 (respectively, u3 = 0), then u1 and u4 must be non-zero and u1u4 = ±1.
Since u2

1 is non-negative, we have that u1 and u4 are both integers. Since u1u3

(respectively, u2u4) is rational, this implies u3 (respectively, u2) is rational and thus
an integer.

It remains to consider the case when all of the ui are non-zero. Since u1u2, u3u4,
u1u3, and u2u4 are all rational, we have that Q(ui) is the same for all i, say Q(

√
d)

where d is a square free positive integer. Now the ui are all square roots of integers,
and thus ui = ni

√
d, where ni is an integer. However, that implies that (u1u4−u2u3)

is divisible by d. Thus d = 1, and all of the ui are integral, and we see that X is in the
image of GL2(Z). (If u1u4 − u2u3 = 1, take a = u1 and b = −u2, and c = −u3, and
d = u4. If u1u4−u2u3 = −1, take a = u1 and b = −u2, and c = u3, and d = −u4.)
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Chapter 5

Parametrization of ideal classes in
rings associated to binary forms

5.1 Introduction

The goal of this chapter is to find a moduli space for ideal classes in the rings asso-
ciated to binary n-ic forms. Every binary form of degree n has a ring of rank n (a
ring isomorphic to Zn as a Z-module) associated to it ([35], [39], Chapter 3). For
n = 2, the associated ring to a binary quadratic form is just the quadratic ring of the
same discriminant used in Gauss composition, the parametrization of ideal classes of
quadratic rings by binary quadratic forms. For n = 3, binary cubic forms parametrize
cubic rings exactly ([21], [24]). See Chapters 3 and 4 for results on which rank n rings
are associated to binary n-ic forms.

When n = 2, ideal classes of quadratic rings are parametrized by binary quadratic
forms themselves. Bhargava [5] has found a moduli space for ideal classes of cubic
rings. This is his space of 2 by 3 by 3 boxes, or classes of elements of Z2 ⊗ Z3 ⊗ Z3.
In this chapter, we find that classes of elements of Z2 ⊗ Zn ⊗ Zn parametrize ideal
classes of the rings associated to binary n-ic forms for all n. When n = 2, 3, these
are the results of Bhargava in [4], [5]. One can also study symmetric elements of
Z2⊗Zn⊗Zn, that is elements of Z2⊗Sym2 Zn. These are related to the 2-part of the
class group of rings associated to binary n-ic forms, just as in the cases n = 2, 3 in
[4], [5]. Morales ([34], [33]) has also studied elements of Z2⊗ Sym2 Zn and associated
modules to them, though he associates modules for a slightly different ring than in
our work.

In addition, this chapter gives analogous results when the integers are replaced
by an arbitrary base scheme S (or base ring when S = SpecR), and so we generalize
the results from [4] and [5] from the integers to an arbitrary base. Morales [34]
replaces Z by an arbitrary maximal order in a number field in his constructions
of modules from symmetric tensors. In this chapter, we give both algebraic and
geometric constructions for the modules associated to an element of Z2 ⊗ Zn ⊗ Zn.
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5.1.1 Outline of results

We can represent an element of the space Z2⊗Zn⊗Zn as a pair A = (A1, A2) of n by
n matrices. Let fA be the binary n-ic form Det(A1x+A2y). For a form f , let Rf be
the ring associated to f as in Chapter 3. Let Γ be the subgroup of elements (g1, g2)
of GLn(Z)× GLn(Z) such that Det(g1) Det(g2) = 1. Over the integers, in the nicest
cases, we have the following theorem.

Theorem 5.1.1. For a primitive non-degenerate binary n-ic form f , there is a bi-
jection between Γ classes A ∈ Z2 ⊗ Zn ⊗ Zn such that fA = f and (not necessarily
invertible) ideal classes of Rf .

If f = F (x1, x2) is monic, then Rf = Z[θ]/F (θ, 1), and this generalizes the classical
result that ideal classes of monogenic rings correspond to conjugacy classes in Zn⊗Zn

whose characteristic polynomial is F (t,−1). If f is monic, that implies that Det(A1) =
1. We can then act by an element of Γ so as to assume that A1 is the identity matrix.
Further Γ action fixing A1 (the identity matrix) is just conjugation of A2. So, we
can view Theorem 5.1.1 as placing rings associated to binary forms in analogy with
monogenic rings, as in [18] and [39].

In the case n = 3, Theorem 5.1.1 is slightly stronger than the corresponding
version in [6], which gives a correspondence between A associated to invertible ideals
and invertible ideal classes of Rf . As in [4, 5], we must define a notion of balanced
to state a theorem that works over all forms. There are several equivalent ways
to formulate the notion of balanced. For a non-zero form f , there is a naturally
associated ideal class If of Rf , and a natural map If → Z2. A balanced pair of
modules for a non-zero form f is a pair of Rf -modules M and N , each a free rank n
Z-module, and a map of Rf -modules M⊗Rf

N → If , such that when the composition
M ⊗Z N →M ⊗Rf

N → If → V is written as a pair of matrices A1 and A2, we have
det(A1x1 +A2x2) = ±f . Corollary 5.5.3 shows that when f is non-zero, every finitely
generated invertible module (or invertible fractional ideal) has a balancing partner,
and it is unique. In [6], Bhargava asks for an appropriate formula of balanced for
degenerate forms so as to obtain a theorem such as the below. Our definition works
for degenerate forms except for the zero form.

Theorem 5.1.2. For every non-zero binary n-ic form f with coefficients in Z, there
is a bijection{

isomorphism classes of balanced
pairs (M,N) of modules for f

}
←→

{
Γ classes of A ∈ Z2⊗Zn⊗Zn with
det(A) = f

}
.

In order to prove Theorem 5.1.1 from Theorem 5.1.2, we prove that for non-
degenerate f , all modules appearing in balanced pairs are realizable as fractional ideals
(Propositions 5.5.1 and 5.5.4), and that for primitive and non-degenerate f , every
fractional ideal has a unique balancing partner (Proposition 5.5.8). Theorem 5.1.2 is
proven in Section 5.3.

We can also prove results for symmetric elements of A ∈ Z2 ⊗ Zn ⊗ Zn. For nice
forms f we get the following, which follows from Theorems 5.4.1 and 5.5.9.
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Theorem 5.1.3. For every primitive non-degenerate binary n-ic form f with coeffi-
cients in Z, there is a bijection

classes of (M,k) where M is a
fractional Rf -ideal, k is an invert-
ible element of Rf ⊗Z Q, and M =
(Ifk : M)

←→
{

GLn(Z) classes of A ∈ Z2 ⊗
Sym2 Zn with det(A) = f

}
,

where Sym2 Zn are symmetric n by n matrices, the action of g ∈ GLn(Z) is by mul-
tiplication on the left by g and the right by gt, and (M,k) and (M1, k1) are in the
same class if M1 = λM and k1 = λ2k for some invertible element λ ∈ Rf ⊗Z Q, and
(Ifk : M) is the fractional ideal of elements x such that xM ⊂ Ifk.

We give a version of the above in Theorem 5.4.1 for all non-zero forms f , which
again uses the notion of balanced. If we restrict Theorem 5.1.3 to invertible modules
M , then the condition M = (Ifk : M) is replaced by M2 = Ifk, and the restricted set
is an extension of a torsor of the 2-part of the class group of Rf by R∗f/R

2
f . (We say

a torsor instead of a principal homogeneous space because If might not be a square
in the class group and there would be no such M in that case.)

We have analogous results over an arbitrary base scheme S. We consider V, U,W ,
locally free OS-modules of ranks 2, n, and n, respectively. We then study global
sections p ∈ V ⊗ U ⊗W . We can construct det(p) ∈ Symn V ⊗ ∧nU ⊗ ∧nW , which
is a binary n-ic form. Fix any f in Symn V ⊗ L, where L is a locally free rank 1 OS-
module. A balanced pair of modules for a non-zero divisor f is a pair of Rf -modules
M and N , each a locally free rank n OS-module such that ∧nM ⊗ ∧nN ∼= L∗, and a
map of Rf -modules M ⊗Rf

N → If , such that when the composition M ⊗OS
N →

M ⊗Rf
N → If → V is written as A ∈M∗ ⊗N∗ ⊗ V we have det(A) = fu, where u

is a unit in OS. We have the following, proven in Theorem 5.6.2.

Theorem 5.1.4. For every non-zero divisor binary n-ic form f ∈ Symn V ⊗L, there
is a bijection

{
isomorphism classes of balanced
pairs (M,N) of modules for f

}
←→


isomorphism classes of A ∈ V ⊗
U ⊗ W , where U and W are lo-
cally free rank n OS-modules with
an isomorphism ∧nU ⊗ ∧nW ∼= L
such that det(A) = f

 .

From a p ∈ V ⊗ U ⊗ W we give two constructions of the corresponding ideal
classes or modules. The first construction (in Section 5.6) is algebraic and concrete
and the second (in Section 5.8) is geometric and more intuitive. We give a heuristic
description of the geometric construction here. If we have locally free OS-modules F
and G, and s ∈ F ⊗ G, then we can construct the k-minor ∧ks ∈ ∧kF ⊗ ∧kG. If
H is also a locally free OS-module, and we have s ∈ F ⊗ G ⊗ H, then we have a
k-minor ∧k

Hs with H-coefficients in ∧kF ⊗ ∧kG⊗ Symk H. For p ∈ V ⊗ U ⊗W , the
n minor with coefficients in V defines a subscheme Tp(V ) in P(V ), the 2 minor with
coefficients in U defines a subscheme Tp(U) in P(U), and the 2 minor with coefficients
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in W defines a subscheme Tp(W ) in P(W ). Abusing notation, we let π denote the map
from all of these schemes to S. The heuristic definition of Rf is to take π∗OTp(V ) (or
π∗OTp(U) or π∗OTp(W )–all the rings turns out to be the same), and M = π∗OTp(U)(1)
and N = π∗OTp(W )(1) (where O(1) is as pulled back from the corresponding projective
bundle). This construction does not work for all p (for example, it doesn’t work for
p = 0) and it is not functorial in S. As in the case of binary n-ic forms, we must use
hypercohomology to make a construction that works in all cases and is functorial.

5.1.2 Outline of the chapter

In Section 5.2 we review the rings and ideals associated to binary n-ic forms. In
Section 5.3, we prove Theorem 5.1.2. We first give the algebraic constructions of the
modules from an element of Z2 ⊗Zn ⊗Zn in Section 5.3.1. In Section 5.3.2 we prove
Theorem 5.1.2 when the leading coefficient of f is not zero. In Section 5.3.3, we study
the GL2(Z) invariance of our construction of modules, and use this to finish the proof
of Theorem 5.1.2. In Section 5.4 we give the general analogs of Theorem 5.1.2 for
symmetric tensors.

In Section 5.5, we further study the notion of balanced pairs of modules, and
show it is equivalent to a characteristic polynomial condition and an index condition
(Proposition 5.5.1). In Section 5.5.1, we show that for non-degenerate binary n-ic
forms all balanceable modules are fractional ideals (Proposition 5.5.4), and prove that
in this case our definition of balanced is equivalent to a norm condition on fractional
ideals (Theorem 5.5.5). This condition generalizes the definition of a balanced pair of
fractional ideals in the cases n = 2, 3 in [4] and [5]. In Section 5.5.2, we specialize to
the case of primitive non-degenerate forms, where we see that every fractional ideal
has a unique balancing partner. This is the final step in the proof of Theorem 5.1.1.
We can work similarly for symmetric tensors, and we find that Theorem 5.1.3 follows
from Theorem 5.4.1 for general non-zero forms, and Theorem 5.5.9, which finds an
equivalent condition for balanced in the primitive case.

In Section 5.6, we prove versions of these main theorems over an arbitrary base.
In particular, we prove Theorem 5.1.4 (as Theorem 5.6.2) and a symmetric version.
In Section 5.7, we give a geometric construction of the modules from the universal
form and prove it is the same as the algebraic construction in Section 5.3.1. The
main obstacle is that we give multiple ring constructions and we must show that
they agree. The rings are given by global sections of different schemes, but the
schemes themselves are not isomorphic. Finally, in Section 5.8, we give a geometric
construction over arbitrary base of the modules from a triple tensor and prove that
it commutes with base change (Corollary 5.8.3).

5.2 Binary forms, rings, and ideals

Given a binary n-ic form f0x
n
1 + f1x

n−1
1 x2 + · · ·+ fnx

n
2 with fi ∈ Z, in Chapter 3 we

have defined a rank n ring Rf and a sequence of Rf -modules. Here we review the
facts about Rf and these modules that are necessary in this chapter, as well as make
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some computations that will be critical in this work. We will eventually need these
results over more general rings than Z, so we will now work over an arbitrary ring B
in place of Z.

Let f = f0x
n
1 + f1x

n−1
1 x2 + · · ·+ fnx

n
2 a binary n-ic form with coefficients fi ∈ B

such that f0 is not a zero divisor in B. We first give geometric constructions of a
ring and ideals from f , as given in Chapter 3. We define Rf as the B-algebra of
global sections of the regular functions of Tf , the subscheme of P1

B defined by f . We
have line bundles OTf

(k) on Tf pulled back from O(k) on P1
B. We define If to be

Γ(OTf
(n − 3)) (i.e. the global sections of OTf

(n − 3)), and Jf to be Γ(OTf
(n − 2)).

This gives If and Jf the structure of Rf -modules. Note that our If is the In−3
f or

If n−3 of Chapter 3, and our Jf is the In−2
f or If n−2 of Chapter 3.

Equivalent, but more concrete, constructions of Rf , If , and Jf are also given
in Chapter 3, and we give those now, as they will be easier to work with. Write
f = F (x, y). Let B′ = Bf0 (the ring B with f0 inverted). We can also define the
B-algebra Rf as the subring of B′[θ]/F (θ, 1) generated by ζ0, . . . , ζn−1 with

ζ0 = 1, and ζk = f0θ
k + · · ·+ fk−1θ for k > 1.

The ζk give a B-module basis of Rf , and it is shown in Chapter 3 that this definition
of Rf agrees with the geometric one give above, and in particular that the B-module
generated by the ζi is closed under multiplication. Note that if f0 is a unit in B, then
Rf = B[θ]/F (θ, 1). We can define If and Jf as sub-B-modules of B′[θ]/F (θ, 1), such
that

If is the B-module generated by 1, θ, θ2, . . . , θn−3, ζn−2, ζn−1 or

equiv. the B-module generated by 1, θ, θ2, . . . , θn−3, f0θ
n−2, f0θ

n−1 + f1θ
n−2

Jf is the B-module generated by 1, θ, θ2, . . . , θn−3, θn−2, ζn−1.

When n = 2, we use only the second description of If given above. In Chapter 3, it is
shown that these definitions of If and Jf agree with the geometric ones given above,
and in particular that If and Jf are closed under multiplication by elements of Rf .
We have a map of Rf -modules If → Jf given by inclusion. This map is not canonical
and does not arise geometrically, yet it will be important in our proofs.

The elements f0, ζ1, . . . , ζn−1 are a B′-module basis of B′[θ]/F (θ, 1). Let ζ̌i be
the B′-module basis of HomB′(B′[θ]/F (θ, 1), B′) dual to the ζi. So ζ̌i(ζj) = δij for
j > 0. Also, let θ̌i be the B′-module basis of HomB′(B′[θ]/F (θ, 1), B′) dual to
1, θ, θ2, . . . , θn−1. We can apply these ζ̌i and θ̌i to elements in I and J since they
lie in B′[θ]/F (θ, 1), but they are not necessarily dual to a B-module basis of I or J .
The following are the key computations we will need.

Proposition 5.2.1. For r ∈ B′[θ]/F (θ, 1) and 1 ≤ k ≤ n− 1,

ζ̌n−1(ζkr) = θ̌n−1−k(r)− fkζ̌n−1(r).

Proof. We will write out ζkr in terms of powers of θ and then read off the coefficient
of θn−1. First, we write r =

∑n−1
j=0 rjθ

j and so

ζkr = (f0θ
k + · · ·+ fk−1θ)(rn−1θ

n−1 + · · ·+ r0).
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To find the θn−1 coefficient, we only have to look at terms of r with j ≥ n − 1 − k.
From the rn−1−kθ

n−1−k term we get a θn−1 coefficient of rn−1−kf0. From the remaining
terms, we get the sum

n−1∑
j=n−k

rjθ
j(f0θ

k + · · ·+ fk−1θ) =
n−1∑

j=n−k

rjθ
j−(n−k)(f0θ

n + · · ·+ fk−1θ
n−k+1)

=
n−1∑

j=n−k

−rjθ
j−(n−k)(fkθ

n−k + · · ·+ fn)

and the only term of the final sum with a non-zero θn−1 coefficient is the j = n − 1
term which has a θn−1 coefficient of −rn−1fk. So θ̌n−1(r) = f0θ̌n−1−k(r)− fkθ̌n−1(r),
and dividing by f0 proves the proposition.

Corollary 5.2.2. For r ∈ B′[θ]/f(θ, 1),

ζ̌n−1(θr) = ζ̌n−2(r).

Proof. We have

ζ̌n−1 :=
θ̌n−1

f0

and ζ̌n−2 :=
θ̌n−2 − f1θ̌n−1

f0

f0

,

and thus this follows from the above proposition when k = 1.

Lemma 5.2.3. If we have a homomorphism φ of B-modules from some B-module P
to Jf , then the image of φ is in If if and only if the image of ζ̌n−2φ is in B.

Proof. The elements of If are just the elements j ∈ Jf for which ζ̌n−2(j) ∈ B.

Thus ζ̌n−1 and −ζ̌n−2 give two B-module maps from If to B, or a B-module map
If → V = B2, where (−1)i+1ζn−i gives the map into the ith coordinate of V . We
choose the maps in such a way that the map If → V the canonical map given in
Equations (3.14) and (3.15). This map is useful because it doesn’t lose information
about Rf -module maps. More formally, we have the following.

Proposition 5.2.4. For any binary n-ic form f and any Rf -module P , composition
with the map If → V gives an injection of Rf modules

HomRf
(P, If )→ HomB(P, V ).

Proof. Suppose, for the sake of contradiction, that we had a non-zero map φ ∈
HomRf

(P, If ) such that the image of φ was in the kernel of If → V . Let r be a
non-zero element of im(φ). Then, by Proposition 5.2.1 we have

θ̌n−1−k(r) = ζ̌n−1(ζkr) = 0

for 2 ≤ k ≤ n− 1. Thus, we see that r = 0.
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In Corollary 3.3.7, we see that as Rf modules, Jf
∼= HomB(Rf , B), and thus we

have the following proposition.

Proposition 5.2.5. For any binary n-ic form f and any Rf -module P , composition
with the map ζ̌n−1 : Jf → B gives an isomorphism of Rf modules

HomRf
(P, Jf )

ζ̌n−1→ HomB(P,B).

5.3 Main theorems

We write an element A ∈ Z2 ⊗ Zn ⊗ Zn as pair A1, A2 of n × n matrices. The
determinant of A is the binary n-ic form det(A1x1 + A2x2). For binary form f with
integer coefficients, we defined in Section 5.2 a rank n ring Rf and two modules If
and Jf for that ring. Recall that we have a map If → V of abelian groups, where
V = Z2. We will next define a notion of a balanced pair of Rf -modules. The idea is
that the product of the pair should map to If , but that map should be constrained
by the form f itself.

Definition. A based balanced pair of modules for f is a pair of Rf -modules M and
N , a choice of basis M ∼= Zn and N ∼= Zn, and a map of Rf -modules M ⊗Rf

N → If ,
such that when the composition M ⊗Z N →M ⊗Rf

N → If → V is written as a pair
of matrices A1 and A2 (viewing elements of M as row vectors and elements of N as
column vectors), we have det(A1x1 + A2x2) = f . If vi, mj, and nk are the bases of
V , M , and N respectively indicated above, then the j, k entry of Ai is the coefficient
of vi in the image of mj ⊗ nk, i.e. (−1)i+1ζn−i(mj ⊗ nk). We will often refer to the
based balanced pair as M,N , with the bases and balancing map understood.

Definition. A balanced pair of modules for a non-zero form f is a pair of Rf -modules
M and N , each a free rank n Z-module, and a map of Rf -modules M ⊗Rf

N → If ,
such that when the composition M ⊗Z N → M ⊗Rf

N → If → V is written as
a pair of matrices A1 and A2, we have det(A1x1 + A2x2) = ±f . Given a balanced
pair of modules for a non-zero form f , there is a unique choice of generator χ of
∧nM ⊗∧nN such that det(A1x1 +A2x2) = f when choosing bases of M and N that
give χ ∈ ∧nM ⊗ ∧nN , because −χ would give det(A1x1 + A2x2) = −f . If we have
based balanced pairs (M,N) and (M ′, N ′) such that the modules and balancing maps
are the same and only the bases differ, then the change of bases must preserve χ since
both based balanced pairs give det(A1x1 + A2x2) = f .

In this section we prove the following theorem.

Theorem 5.3.1. For every non-zero binary n-ic form f with coefficients in Z, there
is a bijection{

based balanced pairs (M,N) of
modules for f

}
←→ {A ∈ Z2⊗Zn⊗Zn with det(A) = f} .
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Let Γ be the subgroup of GLn(Z)×GLn(Z) of elements (g1, g2) with det(g1) det(g2) = 1.
Then, Γ acts equivariantly in the above bijection (acting of the bases of M and N),
and we obtain a bijection{

isomorphism classes of balanced
pairs (M,N) of modules for f

}
←→

{
Γ classes of A ∈ Z2⊗Zn⊗Zn with
det(A) = f

}
.

It is easy to give a map φ from balanced based pairs to Z2 ⊗ Zn ⊗ Zn. From
the definition of a balanced based pair, we have the map of Z-modules M ⊗Z N →
M ⊗Rf

N → If → V , which can be written as a pair of matrices A1, A2 as above.
This pair of matrices is φ(M,N).

In Section 5.3.1 we construct a based balanced pair of modules from an A ∈
Z2 ⊗Zn ⊗Zn. Our construction is completely concrete, and we give formulas for the
action of Rf on M and N . In Section 5.3.2, we prove that this construction gives an
inverse to the map φ described above when f0 6= 0. In Section 5.3.3, we use the GL2

equivariance of our construction to reduce to the case that f0 6= 0, which will prove
Theorem 5.3.1.

5.3.1 Construction of balanced pair of modules

We are given A ∈ Z2⊗Zn⊗Zn, which we can write as a pair A1, A2 of n×n matrices.
Let f be the determinant of A. In this section, we will construct a based balanced
pair (M,N) of modules for f . We begin by letting M = Zn and N = Zn as abelian
groups. It remains to specify the Rf action on M and N and the map of Rf -modules
M ⊗Rf

N → If . We can write the elements of M as row vectors with entries in Z and
the elements of N as column vectors with entries in Z. Heuristically, the action of
Rf will by given by θ acting on M on the right by −A2A

−1
1 and on N on the left by

−A−1
1 A2. The trouble with this construction is that θ is not an element of Rf (unless

f0, the xn coefficient of f , is ±1) and that A1 is not necessarily invertible (it could
be the zero matrix!). We could solve both of these problems by inverting f0, but it
is possible that f0 = 0. So we will pass to a universal situation, where we can always
invert f0.

We replace Z by the ring Λ = Z[{uijk}1≤i≤2,1≤j≤n,1≤k≤n] (the free polynomial
algebra on 2n2 variables over Z), and we replace A with the universal tensor C in
Λ2 ⊗Λ Λn ⊗Λ Λn, where Ci has j, k entry ui,j,k. We have a binary n-ic form c =
det(C1x1 + C2x2) with coefficients in Λ. We now let MC = Λn and NC = Λn as Λ-
modules. We will give an action of the Λ-algebra Rc on MC and NC and then we will
give a map of Rc-modules MC ⊗Rc NC → Ic. This construction will be equivariant
for the ΓΛ actions, where ΓΛ is the subgroup of GLn(Λ) × GLn(Λ) of (g1, g2) such
that det(g1) det(g2) = 1. To recover a construction over Z, we can just specialize by
letting the ui,j,k = ai,j,k in our formulas.

Rc action

We will write elements of MC as row vectors with entries in Λ and elements of NC as
column vectors with entries in Λ. We can write c = c0x

n
1 + c1x

n−1
1 x2 + · · ·+ cnx

n
2 . We
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will invert c0 and denote all of the corresponding objects with a ′. For example, we
have Λ′ = Λc0 , the ring Λ with c0 inverted. We also have R′c = Rc⊗Λ Λ′, which is just
the result of inverting c0 in Rc. If we write c = C(x1, x2), we know from Section 5.2
that R′c = Λ′[θ]/C(θ, 1). We have M ′

C = MC ⊗Λ Λ′ and N ′
C = NC ⊗Λ Λ′.

We define an action of R′c on M ′
C and N ′

C (which we still view as row vectors
and column vectors respectively, just now with entries in Λ′) by having θ act like
−C2C−1

1 (on the right) on the row vectors and −C−1
1 C2 (on the left) on the column

vectors. Since det(C1x1 + C2x2) = c, the matrices −C2C−1
1 and −C−1

1 C2 satisfy their
(common) characteristic polynomial C(t, 1). Thus we have given a well-defined action
of Λ′[θ]/u(θ, 1) on M ′

C and N ′
C. This restricts to an action of Rc on M ′

C and N ′
C, which

we will now show is actually an action of Rc on MC and NC.

Lemma 5.3.2. For 1 ≤ k ≤ n− 1, the matrix

c0(−C−1
1 C2)k + c1(−C−1

1 C2)k−1 + . . . ck−1(−C−1
1 C2) (5.1)

whose entries a priori are in Q(ui,j,k) (the fraction field of Λ) are actually in Λ.

Proof. Over the field Q(ui,j,k), since −C−1
1 C2 satisfies its characteristic polynomial, we

have

c0(−C−1
1 C2)n + c1(−C−1

1 C2)n−1 + . . . ck−1(−C−1
1 C2)n−k+1

+ ck(−C−1
1 C2)n−k + ck+1(−C−1

1 C2)n−k−1 + . . . cn(−C−1
1 C2)0 = 0.

Since C1 and C2 are invertible over the field Q(ui,j,k), the last equation is equivalent
to

c0(−C−1
1 C2)k + c1(−C−1

1 C2)k−1 + . . . ck−1(−C−1
1 C2) (5.2)

=− (ck+1(−C−1
2 C1)0 + . . . cn(−C−1

2 C1)n−k). (5.3)

If we view the matrix entries of the expressions in Equations (5.2) and (5.3) as reduced
ratios of elements of the UFD Λ, the denominator of the left hand side can only involve
u1jk and the denominator of the right hand side can only involve u2jk. Thus, the
matrices c0(−C−1

1 C2)k + c1(−C−1
1 C2)k−1 + . . . ck−1(−C−1

1 C2) must have all their entries
in Λ.

By definition, the Λ-algebra Rc has a basis as a Λ-module given by 1, ζ1, . . . , ζn−1,
where ζk = c0θ

k + · · · + ck−1θ ∈ Λ′[θ]/c(θ, 1). Thus ζk action on N ′
C is given by a

matrix whose coefficients are in Λ, and so it restricts to an action onNC. An analogous
argument can be made for MC. This construction is clearly equivariant for the ΓΛ

actions.

Balancing Map

Now we will construct a map of Rc-modules MC⊗Rc NC → Ic. The matrix C1 gives us
an Λ-module pairing on MC and NC into Λ by α ? β = αC1β for α ∈MC and β ∈ NC.
In other words, the matrix C1 which acts on NC on the left as a Λ-module, gives n
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homomorphisms of Λ-modules from NC into Λ, one for each row of C1, and we map
the ith basis element mi of M to the Λ-module homomorphism of NC into Λ given
by the ith row of C1. This gives us a Λ-module map from MC into HomΛ(NC,Λ) and
we have HomΛ(NC,Λ) ∼= HomRc(N, Jc), by Proposition 5.2.5. We use the symbol ◦
to denote the resulting pairing of MC and NC into Jc. Thus, ζ̌n−1(α ◦β) = α?β. This
pairing in Jc is clearly equivariant for the ΓΛ actions.

Now we will show that ◦ gives a map of Rc-modules MC ⊗Rc NC → Ic. To see
this, we extend our pairing ◦ to M ′

C ⊗Λ′ N
′
C → J ′c, which is a R′c module map for

the R′c action on NC. In fact, we can show that ◦ factors through M ′
C ⊗R′

c
N ′
C, i.e.

(θα) ◦ β = α ◦ (θβ) for α ∈ M ′
C and β ∈ N ′

C. If we fix an α and let β vary over the
elements of N ′

C, the expressions (θα)◦β = α◦ (θβ) give two homomorphisms from N ′
C

into J ′c and we can check if they are the same by taking ζ̌n−1. Now, ζ̌n−1((θα) ◦ β) =
(θα) ? β = α(−C2C−1

1 )C1β and ζ̌n−1(α ◦ (θβ)) = αC1(−C−1
1 C2)β, so we see that ◦ gives

a map of R′c modules M ′
C⊗R′

c
N ′
C → J ′c and thus our original ◦ is a map of Rc-modules

MC ⊗Rc NC → Jc.
We have an inclusion of Rc modules Ic ⊂ Jc (given in Section 5.2), and we will use

Lemma 5.2.3 to see that for all α ∈ MC and β ∈ NC, the element α ◦ β is in Ic. Fix
an α ∈ MC. Then by Lemma 5.2.3, α ◦NC ⊂ Ic if and only if ζ̌n−2(α ◦NC) ⊂ Λ. By
Corollary 5.2.2 we see that ζ̌n−2(α ◦NC) = ζ̌n−1(α ◦ (θNC)) = α ? (θNC). However, we
have seen that the pairing α?(θβ) is given by the matrix −C2, and thus ζ̌n−2(α◦NC) ⊂
Λ. Thus we have given a map of Rc-modules MC ⊗Rc NC → Ic. Note that we have
defined ◦ so that if mj and nk are the chosen bases of MC and NC respectively,

ζ̌n−1(mj ◦ nk) = u1jk and − ζ̌n−2(mj ◦ nk) = u2jk, (5.4)

which makes MC and NC a based balanced pair of modules for c.

Back to Z

Now given A ∈ Z2 ⊗ Zn ⊗ Zn, to find the action of Rf on M , we take the matrix
by which ζk acted on MC above, and substitute ai,j,k for the ui,j,k, and similarly for
N . Of course, the conditions for this to be a ring action will be satisfied since they
are satisfied formally. Also, we have a map of Z-modules M ⊗Z N → If given by
specializing the formulas from the last section, and we can see that this factors through
a map of Rf -modules M ⊗Rf

N → If because the conditions for the factorization and
for the map to respectRf -module structure are satisfied formally. Let ψ(A) = (M,N).

5.3.2 Proof of Theorem 5.3.1 when f0 6= 0

Now we prove Theorem 5.3.1 by showing that φ and ψ are inverse constructions.
Suppose we have A ∈ Z2 ⊗ Zn ⊗ Zn. Let ψ(A) = (M,N), and let A′ = φ(M,N).
By Equation (5.4), we have that A′ = A. Now, suppose we have (M,N), a based
balanced pair of modules for f , and φ(M,N) = A and ψ(A) = (M ′, N ′). We first
check that the action of Rf is the same on M and M ′ (and N and N ′), and then we
will check that the balancing maps agree. We assume that f0 6= 0. In this case, we
may invert f0 as in Section 5.3.1, and obtain Z[θ]/F (θ, 1)-modules Mf0 and Nf0 .
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Proposition 5.3.3. If we write elements of Mf0 as row vectors and elements of Nf0

as column vectors, then θ acts by −A2A
−1
1 on the right on Mf0 and θ acts by −A−1

1 A2

on the left on Nf0.

Proof. We let the mapM⊗ZN → If be denoted by ◦. We define α?β to be ζ̌n−1(α◦β).
We fix a non-zero α ∈Mf0 and suppose for the sake of contradiction that α?Nf0 = 0.
Then α ◦ Nf0 = 0 by Proposition 5.2.5, and thus αA1 = αA2 = 0. Thus α is in the
left kernel of A1x1 +A2x2 for formal xi and so we obtain f = det(A1x1 +A2x2) = 0,
a contradiction. Therefore, if α ◦Nf0 = 0, then α = 0. We have(θα) ? β = ζ̌n−2(α ◦β)
by Corollary 5.2.2 and ζ̌n−2(α ◦ β) = α(−A2)β = (α(−A2A

−1
1 ))A1β. We conclude

that θα = α(−A2A
−1
1 ). A similar argument can be made for Nf0 .

This proposition shows that the pairs of modules (M,N) and (M ′, N ′) have the
same Rf action. We know that the map HomRf

(M ⊗Rf
N, I)→ HomZ(M ⊗Z N, V )

is injective (from Proposition 5.2.4), and thus since φ(M,N) = A and φ(M ′, N ′) =
φ(ψ(A)) = A, we see that (M,N) and (M ′, N ′) have the same balancing map. There-
fore, we have proven Theorem 5.3.1 when f0 6= 0. We will finish the proof at the
beginning of the next section, by reducing to this case.

5.3.3 GL(V ) invariance

Let V = Z2, and we have that GL2(Z) = GL(V ) acts on V ⊗ Zn ⊗ Zn and also on
binary n-ic forms in Symn V . The determinant map is equivariant for these actions.
Let g ∈ GL(V ), so that g(A) = A′ and g(f) = f ′. Then we have (see Chapter 3)
isomorphisms Rf

∼= R′f , and If ∼= I ′f . In fact, g also gives a map V → V such that
the diagram

If
g−−−→ I ′fy y

V −−−→
g

V

commutes.
More concretely, consider g = ( a b

c d ) ∈ GL2(Z). If A = (A1, A2), then g(A) = A′ =
(A′1, A

′
2) = (aA1+bA2, cA2+dA2). If f = F (x, y), then g(f) = f ′ = F (ax+cy, bx+dy).

Write f ′ = F ′(x, y). If θ is a root of F (x, 1), then θ′ = dθ−c
−bθ+a

is a root of F ′(x, 1). This

induces the map R′f
∼= Rf . Note that θ = aθ′+c

bθ′+d
. We can view If and I ′f as fractional

ideals in the same Q-algebra. They are given as fractional ideals of different Q-
algebras, Qf and Q′

f respectively, in Section 5.2, but the map θ′ 7→ dθ−c
−bθ+a

gives an
isomorphism of those Q-algebras. Then the map If ∼= I ′f is given by

If → Qf
∼= Q′

f

×(bθ′+d)n−3

−→ Qf ′ ⊃ I ′f .

Note that 1
bθ′+d

= a−bθ
ad−bc

.

Viewing ζ̌n−1,ζ̌n−2 and ζ̌ ′n−1,ζ̌
′
n−2 as maps of If and I ′f , respectively, we have that

If ∼= I ′f induces

ζ̌ ′n−1 7→ aζ̌n−1 − bζ̌n−2 and − ζ̌ ′n−2 7→ ζ̌n−1 − dζ̌n−2,
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which exactly gives that our construction of (A1, A2) from ζ̌n−1,−ζ̌n−2 is equivariant.
We can check this on a basis of GL2(Z), though it also follows from Proposition 3.3.3.
If we write an element v of V as a column vector, then g acts on V by the standard

left action. In the map from If → V , an element α ∈ If maps to
[

ζ̌′n−1(α)

−ζ̌′n−2(α)

]
.

Our constructions of M , N , and the balancing map are equivariant under this
GL(V ) action. More precisely, under the identifications Rf

∼= R′f and If ∼= I ′f and

the map V
g→ V , the based modules and balancing map we obtain from A are the

same as the based modules and balancing map we obtain from A′. (This can easily be
checked on a basis of GL2(Z), or alternatively, it follows from the geometric versions
of the constructions in Section 5.7. For example, if θ acts like −A2A

−1
1 then θ′ = dθ−c

−bθ+a

will act like (−dA2A
−1
1 − c)(bA2A

−1
1 + a)−1 = −(A′2)(A

′
1)
−1.) Thus, to check that the

Rf action and balancing map on pairs M,N and M ′, N ′ agree, we can check after a
GL2(Z) action on f so that f0 6= 0 (as long as f 6= 0). This proves Theorem 5.3.1.

5.4 Symmetric tensors

In the map{
based balanced pairs (M,N) of
modules for f

}
←→ {A ∈ Z2⊗Zn⊗Zn with det(A) = f} .

of Theorem 5.3.1, it is easy to see from the construction that pairs where M and N are
the same based module exactly correspond to A such that A1 and A2 are symmetric
matrices.

Definition. A self balanced module for a non-zero form f is an Rf -module M , that
is a free rank n Z-module, and a map of Rf -modules M ⊗Rf

M → If , such that when
the composition M ⊗Z N →M ⊗Rf

N → If → V is written as a pair of matrices A1

and A2, we have det(A1x1 + A2x2) = ±f .

We easily conclude the following.

Theorem 5.4.1. For every non-zero binary n-ic form f with coefficients in Z, there
is a bijection{

isomorphism classes self balanced
modules M for f

}
←→

{
GLn(Z) classes of A ∈ Z2 ⊗
Sym2 Zn with det(A) = f

}
,

where Sym2 Zn are symmetric n by n matrices, and the action of g ∈ GLn(Z) is by
multiplication on the left by g and the right by gt.

5.5 Equivalent formulations of the balancing con-

dition

In order to prove Theorems 5.1.1 and 5.1.3 in the Introduction, we will show that
for primitive forms, modules that appear in balanced pairs have unique balance part-
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ners, and that for non-degenerate forms, modules that appear in balanced pairs can
be realized as fractional ideals. First, we will see an equivalent formulation of the
definition of balanced.

We define a characteristic Rf -module M to be a Rf -module M which is a free
rank n Z-module such that for any element ζ ∈ Rf the action of ζ on M viewed as a
Z-module has the same characteristic polynomial as the action of ζ on Rf (by multi-
plication) viewed as a Z-module. Fractional ideals of Rf are characteristic modules
of Rf .

Given two based modules M and N with bases αi and βi respectively such that
M ⊂ N , the index [N : M ] is the absolute value of the determinant of the matrix
Q with entries in Z such that [α1 α2 . . . αn] = [β1 β2 . . . βn] · Q. Now we
will see that our condition of balanced is equivalent to M characteristic and an index
condition on the map M ⊗Rf

N → I.

Proposition 5.5.1. Consider a non-zero binary form f over Z, and two Rf modules
M and N , with a Rf -module map M ⊗Rf

N → If , such that M and N are both free
rank n Z-modules. Then this data gives a balanced pair of modules for f if and only
if M ⊂ HomRf

(N, If ), and [HomRf
(N, Jf ) : M ] = [Jf : If ] (with any inclusion of If

in Jf as Rf -modules), and either M or N is characteristic.

The equality of indexes does not depend on the choice of inclusion of I in J ,
because any two inclusions differ by multiplication by a non-zero divisor in Rf ⊗Z Q.
This multiplies both [HomRf

(N, J) : M ] = [J : I] by the absolute value of the norm
of that element.

Proof. We can act by GL2(Z) so as to assume f0 6= 0. Then, we use the inclusion of
If in Jf given in Section 5.2 and see that [Jf : If ] = f0.

Lemma 5.5.2. Suppose we have two Rf modules M and N , with a map M ⊗Rf

N → If , such that M and N are both free rank n Z-modules, either M or N is
characteristic, and M ⊂ HomRf

(N, If ) such that [HomRf
(N, Jf ) : M ] = f0. Let A,

as usual, denote the map M ⊗Z N → V . We write elements of M as row vectors
with entries in Z. Then θ acts on M ′ = Mf0 by −A2A

−1
1 on the right, and θ acts on

N ′ = Nf0 by −A−1
1 A2 on the left. Also, Det(A1x1 + A2x2) = f .

Proof. We define m?n to be ζ̌n−1(m◦n). By Proposition 5.2.5, we see that ? is faithful
for both M and N if and only if ◦ is. We see that ◦ is faithful on M since the index
of M in HomRf

(N, Jf ) is not zero. If there were an n ∈ N such that M ◦ n = 0 for
all n, then inverting f0 we would find that Mf0 ? n = 0 but Mf0 = HomZf0

(Nf0 ,Zf0),
and we obtain a contradiction since Nf0 is a free Zf0-module and thus there is some
homomorphism from Nf0 to Zf0 which is non-zero on n. So, we fix an α ∈M and let
β vary in N . Then αθ?β = ζ̌n−2(α◦β) = −αA2β = −αA2A

−1
1 A1β = (−αA2A

−1
1 )?β.

We similarly obtain the action of θ on N .
We have that |Det(A1)| is the index of M in HomZ(N,Z) or HomRf

(N, Jf ), which
is the index of I in J , i.e. |f0|. Since M is characteristic, we know that θ and
thus −A2A

−1
1 acts with characteristic polynomial F (t, 1)/f0 on Mf0 . It follows that

Det(A1x1 + A2x2) = ±f . We can argue similarly if N is characteristic.
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Now, suppose that M,N are balanced. Then we know that M,N are constructed
from an element A ∈ Z2 ⊗ Zn ⊗ Zn such that Det(A) = f . We can see from the
construction of the action of θ on Mf0 that M is characteristic. We have a map
M → HomRf

(N, If ), and composition with If ⊂ Jf gives M → HomRf
(N, Jf ) =

HomZ(N,Z). The map M → HomZ(N,Z) is given by A1, and thus [HomRf
(N, J) :

M ] = |f0|, which implies M ⊂ HomRf
(N, Jf ), and thus the map M → HomRf

(N, If )
is injective as well.

Corollary 5.5.3. For a non-zero form f , if N is a finitely generated invertible module
for Rf , then there exists a unique balancing partner M for N .

Proof. If N is a finitely generated invertible module, then N can be realized an an
invertible fractional ideal of Rf [10, II.5.7, Proposition 12]. Then HomRf

(N, Jf ) =
N−1Jf and HomRf

(N, If ) = N−1If . In that case, [HomRf
(N, Jf ) : HomRf

(N, If )] =
[Jf : If ] and for M to be balanced with N it is necessary and sufficient that M =
HomRf

(N, If ).

5.5.1 Non-degenerate forms

When f is a non-degenerate binary n-ic form over Z, we have the following.

Proposition 5.5.4. If f is a non-degenerate binary n-ic form over Z (i.e. disc(f) 6=
0), then all characteristic modules can be realized as fractional ideals. This gives
a bijection between isomorphism classes of characteristic Rf -modules and fractional
ideal classes of Rf .

Proof. We assume f0 6= 0 by an action of GL2(Z). Then, we see that we can put the
action of θ on a characteristic module M in rational normal form over Q, and since it
acts with the same separable characteristic polynomial as the action of θ on Rf ⊗Z Q,
in rational normal form these actions must be the same. Thus, we can view M as a
Z-submodule of Rf ⊗Z Q, or a fractional ideal. Clearly two fractional ideals in the
same class give isomorphic modules. Moreover, a module homomorphism between
two fractional ideals I1 → I2 sends q ∈ Q ∩ I1 to some element k ∈ I2, and since the
map is an Rf -module map, we see that it is multiplication by k/q.

For a fractional ideal M , let |M | denote the norm of M , given by the index
[Rf : M ], which can be defined even if M is not a submodule of Rf , since they sit
in a common Q-vector space. Then, we can reformulate the balancing condition in
terms of norms. This is the version of balanced used in [4] and [5].

Theorem 5.5.5. For non-degenerate f , we have a bijection{
isomorphism classes of balanced
pairs (M,N) of modules for f

}
←→


classes of (M,N) where M and N
are fractional Rf -ideals, MN ⊂ If
and |M ||N | = |If |

 ,

where (M,N) and (M1, N1) are in the same class if M1 = λM and N1 = λ−1N for
some invertible element λ ∈ Rf ⊗Z Q.
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Proof. All modules that appear in balancing pairs are characteristic by Proposi-
tion 5.5.1, and thus can be realized as fractional ideals. For a balanced pair M,N of
modules, we can take any fractional ideal representative of M , but then we choose
the unique representative of N such that the map M ⊗ N → If is just given by
M ⊗ N → MN ⊂ Rf ⊗Z Q with image landing in Rf . If M and N are fractional
ideals of Rf , a map M ⊗Rf

N → I factors through MN .
We now argue that τ : MN → If is injective. As usual, we assume f0 6= 0 by

a GL2(Z) action if necessary. We can detect the injectivity after tensoring with Q
because Q is a flat Z-module. Over Q we have that MN is at least rank n because it
contains N and thus is rank n. We can take θk as a basis of MN , and we see where
they map to in If = Jf = Hom(R,Q). Then τ(θk) is the map in Hom(R,Q) that
sends ζi to ζ̌n−1(ζiθ

k). By Proposition 5.2.1, we have

ζ̌n−1(ζiθ
k) =


1 if k + i = n− 1 and i > 0,

1/f0 if k = n− 1 and i = 0,

0 otherwise.

Thus, we see that τ(MN) = Hom(R,Q), when working over Q, and therefore over Z
we have that MN → If is injective.

A map MN → If is just multiplication by some element of Rf ⊗Z Q. The element
is not a zero-divisor since MN → If is injective, and thus it is invertible in Rf ⊗Z Q.
We can choose that element to be 1 by taking a different representative for N in its
ideal class. If we had chosen a different representative for M , this would change the
class of (M,N).

Suppose we have a balanced pair (M,N) realized as ideal classes with MN ⊂ I.
We will show that the index condition for balanced is equivalent to the norm condition
in the above theorem.

Proposition 5.5.6. Let f be a non-zero form. If M and N are fractional ideals of Rf

with MN ⊂ If , then [HomRf
(N, Jf ) : M ] = [Jf : If ] if and only if and |M ||N | = |If |.

Proof. We can act by GL2(Z) so as to assume f0 6= 0. We claim that |M ||N | is the
product of |Jf | with the determinant of the pairing ζn−1(mn). When M = Rf and
N = Jf , we see from Proposition 5.2.1 that the determinant of the pairing is 1, and
thus the claim is true. If we change Q-bases from Rf , Jf to M,N , we change the
determinant of the pairing by N(M)N(N)/N(Jf ) and thus the determinant of the
pairing ζn−1(mn) is |M ||N |/|Jf |.

The index of M in HomRf
(N, Jf ) is just the index of M in HomZ(N,Z), which

is giving by the pairing ζn−1(mn). Thus [HomRf
(N, Jf ) : M ] = |M ||N |/|Jf |. We see

that [HomRf
(N, Jf ) : M ] = [Jf : If ] if and only if |M ||N | = |If |.

The theorem now follows from the above proposition.

For symmetric tensors, we can make a similar argument to prove the following.
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Theorem 5.5.7. For non-degenerate f , we have a bijection

{
isomorphism classes of self bal-
anced of modules M for f

}
←→


classes of (M,k) where M is a
fractional Rf -ideal, k is an in-
vertible element of Rf ⊗Z Q, and
M2k ⊂ If and |M |2|(k)| = |If |

 ,

where (M,k) and (M1, k1) are in the same class if M1 = λM and k1 = λ−2k for some
invertible element λ ∈ Rf ⊗Z Q.

5.5.2 Primitive forms

If f is primitive them If and Jf are invertible Rf modules (Proposition 3.6.4). For
general non-zero forms, we saw in Corollary 5.5.3 that invertible ideals have unique
balancing partners. For primitive f we have the following.

Proposition 5.5.8. If f is a primitive non-degenerate form, and N is a characteristic
Rf -module, then there exists a unique balancing partner M for N (i.e. an Rf -module
M and map M ⊗Rf

N → If that gives a balanced pair).

Proof. In this case, we see that [HomRf
(N, Jf ) : HomRf

(N, If )] = [Jf : If ]. This is be-
cause HomRf

(N, Jf ) and HomRf
(N, If ) are naturally realized as fractional Rf ideals.

Then we see that HomRf
(N, Jf )J

−1
f If ⊂ HomRf

(N, If ) and HomRf
(N, If )I

−1
f Jf ⊂

HomRf
(N, Jf ). Thus HomRf

(N, Jf ) = HomRf
(N, If )I

−1
f Jf , and [HomRf

(N, Jf ) :

HomRf
(N, If )] is the norm of JfI

−1
f , which is [Jf : If ]. Then, for M to be balanced

with N it is necessary and sufficient that M = HomRf
(N, If ).

Theorem 5.1.1 now follows from Propositions 5.5.8 and 5.5.4 and Theorem 5.3.1.
We can also apply Proposition 5.5.8 to symmetric tensors.

Theorem 5.5.9. For non-degenerate primitive f , we have a bijection

{
isomorphism classes of self bal-
anced of modules M for f

}
←→


classes of (M,k) where M is a
fractional Rf -ideal, k is an invert-
ible element of Rf ⊗Z Q, and M =
(Ifk : M)

 ,

where (M,k) and (M1, k1) are in the same class if M1 = λM and k1 = λ2k for some
invertible element λ ∈ Rf ⊗Z Q, and (Ifk : M) is the fractional ideal of elements x
such that xM ⊂ Ifk.

5.6 Main theorem over an arbitrary base

The proof of Theorem 5.3.1 works over an arbitrary base with some modifications.
Let S be a scheme. We consider binary n-ic forms with coefficients in OS, i.e. f0x

n
1 +

f1x
n−1
1 x2 + · · · + fnx

n
2 with fi ∈ OS. We say such a form is a zero-divisor if it is a
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zero divisor in the OS-algebra OS[x, y], which means that for some open U of S, that
f is zero divisor in OS[x, y](U). We have constructions of Rf , If , and Jf given in
Chapter 3.

Definition. A based balanced pair of modules for f is a pair of Rf -modulesM andN ,
a choice of basis M ∼= OS

n and N ∼= OS
n, and a map of Rf -modules M ⊗Rf

N → If ,
such that when the composition M ⊗OS

N → M ⊗Rf
N → If → V is written

as a pair of matrices A1 and A2, we have det(A1x1 + A2x2) = f . A balanced free
pair of modules for f is a pair of Rf -modules M and N , each a free rank n OS-
module, and a map of Rf -modules M ⊗Rf

N → If , such that when the composition
M ⊗OS

N → M ⊗Rf
N → If → V is written as a pair of matrices A1 and A2, we

have det(A) = fu, where u is a unit in OS. When f is not a zero-divisor, there is
a unique choice of generator of ∧nM ⊗ ∧nN such that when bases of M and N are
chosen with that orientation, we obtain det(A) = f .

Theorem 5.6.1. For every non-zero divisor binary n-ic form f with coefficients in
OS, there is a bijection{

based balanced pairs (M,N) of
modules for f

}
←→

{
A ∈ OS

2 ⊗ OS
n ⊗ OS

n with
det(A) = f

}
.

Let Γ be the subgroup of GLn(OS)×GLn(OS) of pairs (g1, g2) with det(g1) det(g2) = 1.
Then, Γ acts equivariantly in the above bijection (acting of the bases of M and N),
and we obtain a bijection{

isomorphism classes of balanced
free pairs (M,N) of modules for f

}
←→

{
Γ classes of A ∈ OS

2⊗OS
n⊗OS

n

with det(A) = f

}
.

Proof. To construct a based balanced pair of modules from A ∈ OS
2⊗OS

n⊗OS
n, we

can simply use the construction over the universal tensor and plug in the coefficients
of A (and we call this construction ψ). Again, the balancing map composed with
If → V gives the construction φ of an element of OS

2 ⊗ OS
n ⊗ OS

n from a based
balanced pair. Now, suppose we have (M,N), a based balanced pair of modules for
f , and φ(M,N) = A and ψ(A) = (M ′, N ′). We need to check that the action of Rf

is the same on M and M ′ (and N and N ′), and that the balancing maps agree. It
suffices to check this everywhere locally over S, and so we can assume that S is affine,
and S = SpecB. Then, if suffices to check in a larger ring, so we let E be the ring
obtained from inverting all the non-zero divisors in B[x, y].

We have that B[x, y] ⊂ E. We see that x is not a zero divisor in B[x, y], be-
cause xg = 0 implies that the leading coefficient of g is 0. We consider G(t1, t2) =
F (xt1, yt1 + 1

x
t2). This is a binary n-ic form in variables ti with coefficients in E.

Over E we see it is a GL2(E) transformation of f . We have that G(1, 0) = F (x, y),
and thus f is the leading coefficient of the new form. However, f has an inverse in
E and thus is not a zero divisor. By the GL2 invariance of our constructions, we can
reduce to checking in the case where f0 is not a zero divisor. In this case we can prove
Proposition 5.3.3 just as in the case of Z.

76



In fact, we can consider a completely general binary n-ic form over S given by a
locally free rank 2 OS-module V , a locally free rank 1 OS-module L, and a global
section f ∈ Symn V ⊗L. We can define Rf and If in this case as well. We define If to
be If n−3 ⊗ (∧2V )⊗2 ⊗ L in the notation of Section 3.2. Then we have a natural map
If → V ∗ ⊗ ∧2V ∼= V . We say a form f is a zero-divisor if it is a zero divisor on any
open U of S on which V and L are free (and in this case the notion of zero-divisor is
defined above). We now consider A ∈ V ⊗U⊗W , where U and W are locally free rank
n OS-modules with an orientation isomorphism ∧nU ⊗ ∧nW ∼= L. An isomorphism
between A ∈ V ⊗ U ⊗W and A′ ∈ V ⊗ U ′ ⊗W ′ is given by isomorphisms U ∼= U ′

and W ∼= W ′ that take A to A′ and respect the orientations. We can still define the
determinant of A in Symn V ⊗ L. We write W ∗ to denote Hom(W,OS).

Definition. A balanced pair of modules for a non-zero divisor f is a pair of Rf -
modules M and N , each a locally free rank n OS-module such that ∧nM⊗∧nN ∼= L∗,
and a map ofRf -modulesM⊗Rf

N → If , such that when the compositionM⊗OS
N →

M ⊗Rf
N → If → V is written as A ∈M∗ ⊗N∗ ⊗ V we have det(A) = fu, where u

is a unit in OS. When f is a non-zero divisor, given that ∧nM ⊗ ∧nN ∼= L∗, there
is a unique choice of isomorphism so that det(A) = f and not some other multiple of
f .

Theorem 5.6.2. For every non-zero divisor binary n-ic form f ∈ Symn V ⊗L, there
is a bijection

{
isomorphism classes of balanced
pairs (M,N) of modules for f

}
←→


isomorphism classes of A ∈ V ⊗
U ⊗ W , where U and W are lo-
cally free rank n OS-modules with
an orientation isomorphism ∧nU⊗
∧nW ∼= L, and det(A) = f

 .

Proof. From A, we can construct Rf modules from U∗ and W ∗ by giving the Rf

action locally where U and W are free and we can chose bases, and then seeing that
it is invariant under change of basis by elements of GLn×GLn that preserve the
orientation. Similarly, we can construct the balancing map. Again, the construction
of A from a balanced pair of modules just combines the balancing map with If → V .
To see that these constructions are inverse, it suffices to check locally on S, where we
can assume V , U , and W are free.

As when working over Z, we can also get a version on the theorem for symmetric
tensors.

Definition. A self balanced module for a non-zero divisor f is an Rf -modules
M , that is a locally free rank n OS-module and such that (∧nM)⊗2 is isomorphic
to L∗, and a map of Rf -modules M ⊗Rf

N → If , such that when the composition
M⊗OS

N →M⊗Rf
N → If → V is written as A ∈M∗⊗N∗⊗V we have det(A) = fu,

where u is a unit in OS.

77



Theorem 5.6.3. For every non-zero divisor binary n-ic form f ∈ Symn V ⊗L, there
is a bijection

{
isomorphism classes of self bal-
anced modules M for f

}
←→


isomorphism classes of A ∈ V ⊗
Sym2 U , where U is a locally free
rank n OS-module with an orien-
tation isomorphism (∧nU)⊗2 ∼= L,
and such that det(A) = f

 .

5.7 Geometric construction

Just as we have in Chapter 3 both concrete and geometric constructions of Rf , If , and
Jf , we can also give geometric constructions of the Rf -modules M and N that were
constructed explicitly from a A ∈ Z2⊗Zn⊗Zn above. We will give only a geometric
construction of the modules M and N in ψ(A), and not another construction of the
balancing map M ⊗Rf

N → If .

Notation. When we have an a matrix M ∈ Zm ⊗ Zn, we can multiply M by
vectors in two ways. We can multiply M by a length m vector on the left, and
we can multiply M by a length n column vector on the right. When we have an
element A ∈ Z`⊗Zm⊗Zn, we can multiply it by vectors in three different ways, and
we realize that the “on the left” and “on the right” descriptions do not generalize
appropriately for three dimensional tensors. We will need a new language. An element
A ∈ Z` ⊗ Zm ⊗ Zn is comprised of entries aijk, with 1 ≤ i ≤ `, 1 ≤ j ≤ m,
and 1 ≤ k ≤ n. We say that aijk is the entry in the ith aisle, jth row, and kth
column. Note that aisle, row, and column denote two dimensional submatrices, i.e.
codimension one slices of A. For A ∈ Z2 ⊗ Zn ⊗ Zn, the n by n matrix we called Ai

above is the ith aisle of A. If we have a sequence x1, . . . , x`, we can form it into a
vector and combine it with A to get the m by n matrix we call A(x, ·, ·) with j, k entry∑

i aijkxi. The dots indicate that we have not also multiplied by vectors in the other
situations. For example, for A ∈ Z2 ⊗ Zn ⊗ Zn, the matrix A(x, ·, ·) is what we have
previously referred to as A1x1 +A2x2. Similarly, if we have a sequence y1, . . . , ym, we
can form a 2× n array A(·, y, ·) with i, k entry

∑
j aijkyj. We could call this array a

matrix, but it is more convenient to continue to refer to its aisles and columns. If we
have a sequence z1, . . . , zn, we can form a 2×m array A(·, ·, z) with i, j entry (in the
ith aisle and jth row)

∑
` aijkzk. In fact, we will always use a x variable in the first

place, y in the second place, and a z in the third place, and thus we will use the short
hand A(x) for A(x, ·, ·) and A(y) for A(·, y, ·). We may refer to the j, k entry of A(x)
by A(x)j,k and the i, k entry of A(y) by A(y)i,k. We can also multiply A by more
than one vector at a time. For example, A(x, y, ·) (denoted by A(x, y) for short) is a
length n vector with `th entry

∑
i

∑
j aijkxiyj.

Given a 2-dimensional array A with entries in some ring, we can form the ideal
M(A) of the determinants of its maximal minors. For example, for A ∈ Z2⊗Zn⊗Zn,
we have that M(A(x)) = (det(A1x1 + A2x2)). We have previously called the sub-
scheme of P1 defined by this ideal Tdet(A1x1+A2x2). Now, in order to emphasize certain
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symmetries, we say that M(A(x)) defines a subscheme TA(x) ⊂ P1. Analogously, we
have a subscheme TA(y) ⊂ Pn−1 cut out by the determinants of 2× 2 minors of A(y).

The scheme TA(y) has line bundles OTA(y)
(k) pulled back from O(k) on Pn−1

Z .
Heuristically, we would like to say that Rf is the ring of global functions of TA(y) and
then we would have an Rf -module Γ(OTA(y)

(1)). However, we have already defined
Rf , and so it would have to be proven that Γ(OTA(y)

) gives the same ring, and this is
not always the case. For example, when A = 0, we have that Γ(OTA(y)

) = Z, not even
a rank n-ring. This is the same sort of problem that arose in the construction of rings
and ideal from binary forms (Chapter 3) that allows us to use our simple geometric
construction of Rf as the global functions on TA(x) only under some hypothesis such
as f 6= 0, and requires us to use a more complicated geometric construction in general.
For more discussion about the obstacle of using the simple construction, see Chapter 3.

We can, however, use a simple geometric construction of modules from sufficiently
general 2×n×n tensors, including from the the universal tensor of these dimensions.
As in Section 5.3.1, we work over the ring Λ = Z[uijk] and with the universal box C
in Λ2 ⊗Λ Λn ⊗Λ Λn with i, j, k entry ui,j,k. We have a binary n-ic form c = det(C(x))
with coefficients in Λ.

Theorem 5.7.1. The Λ-algebra Γ(OTC(y)
) is isomorphic to Rc.

Proof. Recall that Rc = Γ(OTC(x)
) since c is not a zero-divisor (see Chapter 3). So we

need to show that we have an isomorphism of Λ-algebras Γ(OTC(y)
) ∼= Γ(OTC(x)

). We
might expect that this would follow because we had an isomorphism of Λ-schemes
TC(y)

∼= TC(x), but that is not the case. However, restricted to a large open subscheme
of Spec Λ, we do get such an isomorphism. Let S ′ be the open subscheme of S =
Spec Λ that is the complement of the closed subscheme Z (defined below). Let T ′C(y) =
TC(y) ⊗S S

′, which is an open subscheme of TC(y). Similarly, let T ′C(x) = TC(x) ⊗S S
′,

which is an open subscheme of TC(x). We will show in Lemma 5.7.6 that we have an
isomorphism of S ′-schemes T ′C(y)

∼= T ′C(x).
The subscheme Z of S will correspond to boxes that are very degenerate. Thus we

can think of the box C ⊗S S
′ over S ′ as the universal “not too degenerate” box. The

n− 1 minors of C(x) form a matrix W ({xn−1
1 , xn−2

1 x2, . . . , x
n−1
2 }, ·, ·). The i, j, k entry

of W ∈ Λn ⊗ Λn ⊗ Λn is (−1)j+k times the xn−i
1 xi−1

2 coefficient of the determinant
of the submatrix of C(x) obtained by deleting the jth row and kth column. We can
form det(W (y)), a degree n polynomial in the yi, and form the ideal w of Λ of its
coefficients, with di the coefficient of yn

i . If we do the analogous construction, starting
with C(y), we see that the next-to-maximal minors of C(y) are the entries themselves.
Then we can form det(C(x)) = c, and form the ideal (c0, . . . , cn) of its coefficients.
Let Z be the subscheme of S = Spec Λ defined by the ideal (c0, . . . , cn)w.

We will prove the theorem with the following lemmas.

Lemma 5.7.2. The codimension of Z in S is at least 2.

Proof. Suppose for the sake of contradiction that Z is codimension 1. Then either
the subscheme of S defined by (c0, . . . , cn) or the subscheme defined by w must be
codimension 1 and thus given by a principal ideal. However, we note that c0 and cn
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are expressions is disjoint sets of the uijk. In fact, c0 only involves the u1jk and cn the
u2jk. Thus c0 and cn have no nontrivial divisor in the UFD Λ, and the subscheme cut
out by (c0, . . . , cn) cannot be codimension 1. Similarly, dj does not involve any u∗∗j.
Thus a common divisor of d1, . . . , dn must be trivial, and so the subscheme cut out
by (d1, . . . , dn) cannot be codimension 1. We conclude the subscheme cut out by w,
which is contained in the subscheme cut out by (d1, . . . , dn), cannot be codimension
1.

Lemma 5.7.3. We have that the restriction map Γ(OS)→ Γ(OS′) is an isomorphism
and thus Γ(OS′) is naturally isomorphic to Λ.

Proof. Since S is normal and locally Noetherian, and Z is codimension at least 2,
this is a basic fact in algebraic geometry.

From this lemma we conclude that Γ(OT ′
C(x)

) and Γ(OT ′
C(y)

) are Λ-algebras.

Lemma 5.7.4. The restriction map Γ(OTC(x)
) → Γ(OT ′

C(x)
) is an isomorphism of

Λ-algebras.

Proof. Let π : TC(x) → S. We will see in Theorem 5.8.4 that the sheaf π∗(OTC(x)
)

is locally free on S. We will show that π∗(OTC(x)
) is isomorphic to the pushforward

of π∗(OT ′
C(x)

) to S, and then taking global sections will prove the lemma. We cover

S with opens Ui that trivialize π∗(OTC(x)
). Since S is irreducible, Ui is the same

dimension as S. On each Ui, we then have that Ui ∩ Z is at least codimension 2 in
Ui. Thus, on Ui, the sheaf π∗(OTC(x)

) is isomorphic to O⊕n
S , for which the restriction

map to S ′ is an isomorphism by Lemma 5.7.3. This means that restricted to Ui, we
have that π∗(OTC(x)

) is isomorphic to the pushforward of π∗(OT ′
C(x)

) to S.

Lemma 5.7.5. The restriction map Γ(OTC(y)
) → Γ(OT ′

C(y)
) is an isomorphism of

Λ-algebras.

Proof. The sheaf π∗(OTC(y)
) is locally free on S by Theorem 5.8.4. We then use the

same argument as in Lemma 5.7.4.

Lemma 5.7.6. We have an isomorphism of S ′-schemes T ′C(y)
∼= T ′C(x).

Proof. The idea is that we can define a correspondence between points of T ′C(y) and

T ′C(x) by C(x, y) = 0. For points in T ′C(x), we have det(C(x)) = 0, and thus there

should be some values of yj such that C(x, y) = 0. For these yj, we have that C(y)
sends a non-trivial vector x to 0, and thus is rank 1. Conversely, for points in T ′C(y),

we have that C(y) is rank 1, and thus should send a non-trivial vector x to zero, and
C(x, y) = 0 implies that C(x) has determinant zero. The first difficultly in making
this idea rigorous is that the correspondence is only a bijection when C is sufficiently
non-degenerate, which is why we have had to restrict to the base S ′. Over S ′, we can
use the above argument to get a bijection of field valued points of T ′C(y) and T ′C(x).
Below, we must work a bit harder to get an actual isomorphism of schemes, as well
as to see that the boxes parametrized by S ′ are in fact sufficiently non-degenerate.
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First we give a map T ′C(y) → T ′C(x). We will give maps from open sets of T ′C(y)

to P1
S′ . We will then show that the open sets cover T ′C(y). We will then show that

these maps agree on overlaps, and finally we will show that the image lands in T ′C(x).

Given an 1 ≤ i ≤ n, we map T ′C(y) to P1
S′ via x1 = −

∑
j u2jkyj and x2 =

∑
j u1jkyj,

which we can do on the open set Ek ⊂ T ′C(y) defined as the complement of the ideal

(
∑

j u1jkyj,
∑

j u2jkyj). Note that
∑

j uijkyj is the i, k entry of C(y), or of the next-
to-maximal minor of C(y). Suppose there was a point of T ′C(y) not in any Ek. If we

write y for the vector of the yj’s, then at this point we have C(y) = 0, i.e. C1(y) = 0
and C2(y) = 0, and thus for formal xi, we have C(x, y) = 0, and thus det(C(x)) = 0 at
this point, which contradicts our choice of S ′ to be in the complement of (c0, . . . , cn).

The fact that these maps agree on the intersection of Ek and E` is exactly given
by the fact that on T ′C(y) the 2× 2 minor of C(y) including rows k and ` is 0. To see
that the image of our map lands in T ′C(x), we check on open Pi of T ′C(y), where yi is

non-zero. We have that C(x) on E` has j, k entry −u1,j,k

∑
a a2a`ya + u2,j,k

∑
a a1a`ya,

and thus C(x, y) has kth entry

∑
j

yj

(
−u1,j,k

∑
a

u2a`ya + u2,j,k

∑
a

u1a`ya

)
=
∑

j

−u1,j,kyj

∑
a

u2a`ya +
∑

j

u2,j,kyj

∑
a

u1a`ya

=− C(y)1,kC(y)2,` + C(y)2,kC(y)1,`,

which is zero by the definition of T ′C(y). On Pi we form the column vector y/yi of

regular functions, with jth entry yj/yi, and we see that C(x, y/yi) = 0. Thus we can
write the ith row of C(x) as a linear combination of the other rows, and conclude that
det(C(x)) = 0.

Next, we will give a map T ′C(x) → T ′C(y), which should be seen in analogy to the

map T ′C(y) → T ′C(x). We will give maps from open sets of T ′C(x) to Pn−1
S′ , and show

that the open sets cover T ′C(y). We will then show that these maps agree on overlaps,
and finally we will show that the image lands in T ′C(x). Given an 1 ≤ i ≤ n, we map

T ′C(x) to Pn−1
S′ by letting yj equal the j, k minor of C(x), that is yj equals (−1)j+k

times the determinant of the submatrix of C(x) obtained by deleting the jth row and
kth column. We have defined the yj’s to be a column of minors of C(x). This is a
well-defined map to Pn−1 on the open set Fk ⊂ T ′C(x) defined as the complement of

the ideal of n − 1 minors of C(x) for the kth column. Suppose there was a point of
T ′C(x) not in any Fk, then at this point we have all minors of C(x) are 0. This means

that W ({xn−1
1 , xn−2

1 x2, . . . , x
n−1
2 }, ·, ·) = 0. Thus for formal y, we have W (·, y, ·) has

a non-trivial kernel and thus det(W (y)) = 0, which contradicts our choice of S ′ to be
in the complement of w.

The fact that these maps agree on the intersection of Fk and F` is exactly given
by the fact that the 2 × 2 minors of the classical adjoint matrix are divisible by the
determinant of the original matrix. To see that the image of our map lands in T ′C(y),
we check on opens Pi of T ′C(x), where xi is non-zero. On Pi we form the column vector
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x/xi of regular functions, with jth entry xj/xi. Computing C(x, y)` with the yi’s we
have defined on Fk is the same as computing the determinant of C(x) with the kth
column replaced by the `th column. Whether or not k = `, since det(C(x)) = 0, we
obtain C(x, y)` = 0. Thus, C(x/xi, y) = 0 and we can write the ith aisle of C(y) as
multiple of the other aisle. We conclude that C(y) has all 2 by 2 minors 0.

Now we need to check that the maps we have just given are inverses one one
another. We first check on the inverse image of Ek in F`. Here we start with xi, we
define new yj, and then from the yj we define new x′i. We will compute −x′1x2 +x′2x1.
Since we have x′1 = −

∑
j u2jkyj and x′2 =

∑
j u1jkyj, we have that

−x′1x2 + x′2x1 =
∑

j

(u1jkx1 + u2jkx2)yj.

We note that u1jkx1 + u2jkx2 = C(x)j,k, and that yj is defined to be the j, ` minor
of C(x). Thus −x′1x2 + x′2x1 is the determinant of the matrix obtained from C(x) by
replacing the `th column by the kth column, and is zero in any case on TC(x). This
shows that our maps compose to the identity on the inverse image of Ek in F` for all
k and `, and thus on TC(x).

We now check on the inverse image of Fk in E`. Here we start with yj, we define
new xi, and then from the xi we define new y′j. At first, we will use formal yj (i.e. not
assuming the relation in TC(y)). Then we will compute y′jym − y′myj is in the ideal of
relationsM(C(y)) that cut out TC(y). We can form an n×n matrix M with a, b entry
(−1)aC(x)a,bya if a = j,m and C(x)a,b otherwise. Note that (−1)my′jym is the j, k
minor of M and (−1)jy′jym is the m, k minor of M . For any matrix N the difference
of (−1)m times the j, k minor of N and (−1)j times the m, k minor of N is in the
ideal generated by maximal minors of N̄ , which is obtained from N by deleting rows
j and m and adding a row that is the jth row of N plus (−1)j+m times the mth row
of N . The maximal minors of M̄ are not changed if we add multiples of the original
(non-deleted) rows of M to the new row of M̄ . We add (−1)jya times the original ath
row of M to the new row of M̄ to obtain M̄ ′. The maximal minors of M̄ ′ certainly lie
in the ideal generated by the elements of its “new” row, and we claim these elements
are inM(C(y)). In the bth column, the element in the new row of M̄ ′ is is∑

i,c

uicbxiyc(−1)j =
∑
i,c,a

(−1)i+juicbu(3−i)a`yayc =
∑

i

(−1)i+jC(y)i,bC(y)3−i,`,

which is the b, ` minor of C(y) and thus in M(C(y)). This shows that our maps
compose to the identity on TC(x).

Thus it follows that we have an isomorphism of Λ-algebras Rc = Γ(OTC(x)
) ∼=

Γ(OTC(y)
).

From Theorem 5.7.1, we have an Rc-module structure on Γ(OTC(y)
(1)). We now

see that it is related to the module MC we constructed in Section 5.3.1 from the
universal tensor.
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Theorem 5.7.7. We have an isomorphism of Rc-modules

Γ(OTC(y)
(1)) ∼= HomΛ(MC,Λ),

where MC is as in the construction ψ of two Rc modules MC and NC given in Sec-
tion 5.3.1.

Proof. We will see in Theorem 5.8.4 that Γ(OTC(y)
(1)) is a free Λ-module with basis

y1, . . . , yn. Thus, it just suffices to check that the ζi acts on the yj in a way correspond-
ing to their action on MC. We know that ζi acts on the yj by a matrix of elements
of Λ, and thus it suffices to determine this action over the generic point of Spec Λ,
i.e. the fraction field of Λ. We have that C(x, y) = 0 and thus yC1x1 + yC2x2 = 0,
where y is a row vector of the yi. Thus, where x2 is invertible, x1

x2
acts like −C2C−1

1

on the right on the row vector y, and where x1 is invertible, x2

x1
acts like −C1C−1

2 on

the right on the row vector y. Thus x1

x2
acts like −C2C−1

1 on the left on elements of
Γ(OTC(y)

(1)) written as row vectors whose entries are the coefficients of the yi in the

element. We have that θ acts in elements of MC by (−C2C−1
1 )t on the left. Since

in the correspondence between the algebraic and geometric construction on Rc we
have that θ corresponds to x1

x2
, we see that the ζi act on Γ(OTC(y)

(1)) as they act on
HomΛ(MC,Λ).

We can of course get a completely analogous geometric construction of NC as
HomΛ(Γ(OTC(z)

(1)),Λ).

5.8 Geometric construction over an arbitrary base

scheme

Notation. Given a scheme S and a locally free OS-module U , we let U∗ denote the
OS-module HomOS

(U,OS), even if U is also a module for another sheaf of algebras.

Now we replace Spec Λ by an arbitrary scheme S, and we consider V, U,W , locally
free OS-modules of ranks 2, n, and n, respectively. Let p ∈ V ⊗ U ⊗W denote a
global section of V ⊗ U ⊗W . We can construct f = det(p) ∈ Symn V ∧n U ⊗ ∧nW .
We have, in Section 5.6 constructed a balanced pair M,N of modules for f from p.
In this section, we will give a geometric construction of those modules, or rather a
geometric construction of M∗ and N∗ as we have done in the case of the universal
form in Section 5.7.

As in Section 5.7, we can give a heuristic geometric construction that will work in
most cases. First, we define some basic constructions on vector bundles. If we have
locally free OS-modules F and G, and s ∈ F ⊗G, then we can construct the k-minor
∧ks ∈ ∧kF ⊗∧kG. If H is also a locally free OS-module, and we have s ∈ F ⊗G⊗H,
then we have a k-minor ∧k

Hs with H-coefficients in ∧kF ⊗ ∧kG ⊗ Symk H. For
p ∈ V ⊗ U ⊗W , the n minor with coefficients in V defines a subscheme Tp(V ) in
P(V ), the 2 minor with coefficients in U defines a subscheme Tp(U) in P(U), and
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the 2 minor with coefficients in W defines a subscheme Tp(W ) in P(W ). Abusing
notation, we let π denote the map from all of these schemes to S. The heuristic
definition of Rf is π∗OTp(V ) (or π∗OTp(U) or π∗OTp(W )), and we also have heuristic
definitions M∗ = π∗OTp(U)(1) and N∗ = π∗OTp(W )(1) (where O(1) is as pulled back
from the corresponding projective bundle). This construction has the same problems
and mentioned in Section 5.7. In particular, it does not work for p = 0 and it is not
functorial in S.

We can, however, make a geometric construction of the modules M∗ and N∗ from
p ∈ V ⊗ U ⊗W that will work for all p and be functorial in S, i.e. will commute
with base change in S. On the universal box, this construction will agree with the
heuristic geometric construction given just above and in Section 5.7, as well as with
the algebraic construction given in Section 5.3.1.

The idea is to replace the schemes Tp(V ), Tp(U), and Tp(W ) with complexes of
sheaves. We will then replace π∗ with the hypercohomology functors H0Rπ∗. This
has already been done for Tp(V ) in the construction of Rf and the module If in
Chapter 3. We face some additional challenges in this chapter for Tp(U) and Tp(W ).
One can also interpret this work as a construction of dg-schemes Tp(V ), Tp(U), and
Tp(W ) instead of just a construction of schemes.

5.8.1 Arbitrary triple tensors

We now give a more general construction before specifying to the situation of interest
in this chapter. Let S be an arbitrary scheme, and let p ∈ V ⊗U ⊗W , where U, V,W
are locally free OS-modules of ranks rU , rV , and rW respectively. Let r = rV . We can
view p as a map W ∗ → V ⊗U , and take rV minors of this map, with coefficients in U ,
to get ∧r

Up : ∧rW ∗ → ∧rV ⊗ Symr U or equivalently ∧r
Up : ∧rW ∗ ⊗∧rV ∗ → Symr U .

Let π : P(U) → S (where P(U) = Proj Sym∗ U). Let O(k) be the usual sheaf of
P(U). Then since π∗O(r) = Symr U , by the adjointness of π∗ and π∗ we get a map

∧r
Up : π∗ (∧rW ∗ ⊗ ∧rV ∗)→ O(r)

or equivalently, for any k, we get

∧r
Up : π∗ (∧rW ∗ ⊗ ∧rV ∗)⊗OS

O(k)→ O(r + k).

It is an abuse of notation to call all these maps ∧r
Up, but it better than the alternative

in which case we would run out of names for maps. Locally on S, where U , V , and
W are free, the map ∧r

Up : π∗ (∧rW ∗ ⊗ ∧rV ∗) → O(r) has image spanned by the(
rW

r

)
r-by-r minors of the matrix of the map W ∗ → V ⊗ U , an rV by rW matrix

with entries in U . The idea of our construction is to replace the sheaf O/ im(∧r
Up)

of regular functions of the subscheme of P(U) cut out by those r-by-r minors with
complex that is generically a locally free resolution of the O/ im(∧r

Up).
From the Eagon-Northcott complex, which resolves R modulo the ` by ` minors

of a generic matrix (see [22]), we can construct a complex C(k) with C−1(k)→ C0(k)
given by

∧r
Up : π∗ (∧rW ∗ ⊗ ∧rV ∗)⊗OS

O(k)→ O(r + k),
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and with Ci(k) = 0 for i > 0 and i ≤ −|rV − rW | − 2. For −|rV − rW | − 1 ≤ i ≤ −2,
we have

Ci(k) = π∗(∧rV ∗ ⊗K−i(r,W
∗, V ))⊗OS

O(i+ 1 + k),

where K−i(r,W
∗, V ) is the locally free OS-module built from V and W that is the ith

term in the Eagon-Northcott complex for a map α : W ∗ → V and di is canonically
constructed from p (and explained in the next paragraph). Note that K−i(r,W

∗, V )
only depends on V and W and does not depend on α.

We now show how to construct the di. From the construction of the Eagon-
Northcott complex, there is a map

HomOY
(W ∗, V )→ HomOY

(∧rV ∗ ⊗K−i(r,W
∗, V ),∧rV ∗ ⊗K−i+1(r,W

∗, V ))

that sends α 7→ di, where di is the map in the Eagon-Northcott complex for α. We
can extend that linear map to

HomOY
(W ∗, V )⊗U → HomOY

(∧rV ∗⊗K−i(r,W
∗, V ),∧rV ∗⊗K−i+1(r,W

∗, V ))⊗OY
U

to get the maps when there are coefficients. Let Hi be the OY -module ∧rV ∗ ⊗
K−i(r,W

∗, V ). We obtain di : Hi → Hi+1 ⊗ U , or equivalently di : Hi ⊗H∗
i+1 → U .

Using adjointness of π∗ and π∗, this is equivalent to di : π∗(Hi ⊗ H∗
i+1) → OU(1),

which gives us di : π∗(Hi)⊗OU(i+ 1 + k)→ π∗(Hi+1)⊗OU(i+ 2 + k).
The complex C(−r) of sheaves on P(U) has a homotopy-associative differential

graded algebra structure from the homotopy-associative differential graded algebra
structure on the Eagon-Northcott complex (which every resolution of a cyclic module
has [11, Proposition 1.1]), and the complex C(−r+ 1) is a differential graded module
for C(−r). Now we make an important calculation about the cohomology of C(−r)
and C(−r + 1).

Theorem 5.8.1. Let p ∈ V ⊗ U ⊗W , where U, V,W are locally free OS-modules of
ranks rU , r, and rW respectively. Assume that r ≥ 2 or that we have have either 1)
rU = 2 and r = rW or 2) both r = 2 and rU − r ≥ |r − rW |. Then Rπ∗C(k) has no
cohomology in any degree except 0 for k = −r and k = −r + 1.

Proof. Let j 6= 0, and we will compute that each term of the complex C(k) has trivial
Rjπ∗. By the projection formula, we can ignore the term that is pulled back from
S. We have Rjπ∗ of the ith term i ≤ −1 of C(k), in the ith place, is Rj−iπ∗ of C(k)i

viewed as a complex in the 0th place. We have that Rj−iπ∗O(i + 1 + k) = 0 unless
either 1) j = i and i + 1 + k ≥ 0 or 2) j − i = rU − 1 and i + 1 + k ≤ −rU . Since
i + 1 ≤ 0 and k ≤ −r + 1 ≤ −1, we can never have i + 1 + k ≥ 0. We consider the
two assumptions of the theorem in cases.

1. Case I: r = 2 and rU − r ≥ |r − rW |. In this case, we have i + 1 + k ≥
−|r−rW |+k ≥ −|r−rW |−r ≥ −rU and thus we can only have i+1+k ≤ −rU

if i = −|r− rW | − 1, and k = −r, and rU − r = |r− rW |. However, that implies
that i = −rU + 1 and thus j = 0.

2. Case II: rU = 2 and r = rW . In this case, we only are considering i = −1,
and thus j − i = rU − 1 implies j = 0.
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We now need to consider Rjπ∗ of the 0th term of C(k) (for j 6= 0). We have that
Rjπ∗O(r + k) = 0 unless 1)j = 0 and r + k ≥ 0 or 2)j = rU − 1 and r + k ≤ −rU .
However, we are assuming j 6= 0 and r + k ≥ 0, and thus this can never happen.
Thus we conclude that for k = −r and k = −r + 1, under our assumptions about
rU , r, and rW , the complex C(k) has no cohomology in any degree except 0.

Corollary 5.8.2. Thus R∧r
Up = H0Rπ∗C(−r) is a sheaf of algebras on S, and I∧r

Up =
H0Rπ∗C(−r + 1) is a sheaf of R-modules on S.

Proof. Since Rπ∗C(−r) is equivalent to a single sheaf in degree 0, it has no non-trivial
homotopies. Thus H0Rπ∗C(−r) has an OS-algebra structure that is associative on
the nose. Since C(−r+1) is a module for C(−r), we have that I∧r

Up = H0Rπ∗C(−r+1)
is an H0Rπ∗C(−r)-module.

We can also view the construction ofR∧r
Up as taking the pushforward of the regular

functions on the dg-scheme given by our resolution of O/ im(∧r
Up), instead of on the

scheme cut out by ∧r
Up.

When p is the universal tensor (of any size), then the Eagon-Northcott complex,
and thus C(k), is exact at every spot except the 0th. Thus, when p is the univer-
sal tensor, C(k) is quasi-isomorphic to O(k)/ im(∧r

Up). The sheaf O(k)/ im(∧r
Up) is

supported on the scheme defined by the r-by-r minors in im(∧r
Up), and is isomorphic

on that scheme to the pullback of O(k) from P(U). Thus, when C is the universal
tensor in Λ2 ⊗ Λn ⊗ Λn, we have that R∧r

UC is the sheaf of rings given by the global
sections Γ(OTC(y)

) (as defined in Section 5.7), and I∧r
UC is the R∧r

UC-module given by
the global sections Γ(OTC(y)

(1)).
Theorem 5.8.1 also allows us to see that the constructions of R∧r

Up and I∧r
Up

commute with base change on S

Corollary 5.8.3. Let p ∈ V ⊗ U ⊗W , where U, V,W are locally free OS-modules of
ranks rU , r, and rW respectively. Assume that r ≥ 2 or that we have have either 1)
rU = 2 and r = rW or 2) both r = 2 and rU − r ≥ |r− rW |. Then the constructions of
R∧r

Up and I∧r
Up commute with base change. More precisely, let φ : S ′ → S be a map

of schemes. Let p′ ∈ φ∗U ⊗ φ∗V ⊗ φ∗W be the pullback of p. Then the natural map
from cohomology

R∧r
Up ⊗OS

OS′ → R∧r
φ∗U

p′

is an isomorphism of OS′-algebras. Also, the natural map from cohomology

I∧r
Up ⊗OS

OS′ → I∧r
φ∗U

p′

is an isomorphism of R∧r
φ∗U

p′-modules (where the R∧r
φ∗U

p′-module structure on

I∧r
Up ⊗OS

OS′ comes from the (R∧r
Up ⊗OS

OS′)-module structure.

Proof. The key to this proof is to compute all cohomology of the pushforward of the
complex C(k) for k = −r and k = −r+1. We already know from Theorem 5.8.1 that
there is only cohomology in degree 0. Theorem 5.8.4 will tell us that H0Rπ∗C(k) is
locally free for k = −r and k = −r + 1. Thus since all H iRπ∗(C(k)) are flat, by [26,
Corollaire 6.9.9], we have that cohomology and base change commute. Note that the
base change morphisms respect the algebra and module structures on R∧r

Up and I∧r
Up,

and thus since they are isomorphisms, they are algebra and module isomorphisms.
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5.8.2 OS-module structure of R∧r
Up and I∧r

Up

Now we consider a base scheme S, and V, U,W locally free OS-modules of ranks
2, n, and n, respectively. In this case, we construct the OS-algebra and module
pairs R∧n

V p and I∧n
V p, R∧2

Up and I∧2
Up, and R∧2

W p and I∧2
W p. We will now find the

OS-module structure of all of these constructions. This has already been done for
the ∧n

V p construction in Chapter 3, and so we consider here the ∧2
Up (as the ∧2

Wp
constructions will follow identically).

Theorem 5.8.4. We have an exact sequence of OS-modules

0→ OS → R∧2
Up → (Symn−2 V )∗ ⊗ ∧2V ∗ ⊗ ∧nW ∗ ⊗ ∧nU∗ → 0,

and an OS-module isomorphism I∧2
Up
∼= U .

Proof. From Theorem 5.8.1, we know that for k = −r and k = −r+1 C(k) has trivial
HjRπ∗ for all j 6= 0, and all components C(k)i

i of the complex (the ith term of C(k)
sitting as a complex in the ith place) have H0Rπ∗(C(k)i

i) = 0 except for possibly the
two extremal terms i = 0 and i = −n+ 1. Thus, by the standard machinery of long
exact sequences in cohomology, we have the exact sequences

0→ H0Rπ∗(O)→ R∧2
Up → Hn−1Rπ∗(π

∗(∧2V ∗⊗K−n+1(2,W
∗, V ))⊗OS

O(−n))→ 0

and

0→ H0Rπ∗(O)→ R∧2
Up → Hn−1Rπ∗(π

∗(∧2V ∗⊗K−n+1(2,W
∗, V ))⊗OS

O(−n+1))→ 0.

We see that

Hn−1Rπ∗(π
∗(∧2V ∗ ⊗K−n+1(2,W

∗, V ))⊗OS
O(−n))

= ∧2 V ∗ ⊗K−n+1(2,W
∗, V )⊗OS

Hn−1Rπ∗(O(−n))

= ∧2 V ∗ ⊗K−n+1(2,W
∗, V )⊗OS

∧nU∗.

Since K−n+1(2,W
∗, V ) = (Symn−2 V )∗⊗∧nW ∗, we obtain the exact sequence desired.

Also, note that Hn−1Rπ∗(O(−n+ 1)) = 0.

One naturally wonders whether the three OS-algebras constructed from a tensor
p ∈ V ⊗ U ⊗ W are isomorphic. In the case that V, U , and W are free, then p
is a pull-back from the universal tensor, in which case we know the algebras are
isomorphic from Theorem 5.7.1. If one checks that the algebra isomorphism given
by Theorem 5.7.1 is canonical, that it doesn’t depend on the choice of bases of V ,
U , and W , then that would show that the three OS-algebras constructed from a
tensor p ∈ V ⊗ U ⊗ W are all isomorphic because locally, V , U and W are free,
and if the isomorphisms between algebras do not depend on the choice of bases, they
will agree on overlaps. In fact, the constructions made in Lemma 5.7.6 to give the
isomorphism of S ′-schemes T ′C(y)

∼= T ′C(x) are all given by minors of matrices and in
fact are canonical.

87



Chapter 6

Parametrizing quartic rings over
an arbitrary base

6.1 Introduction

It has been known since the work of Delone and Faddeev [21] (see also [17], [24],
and [6]) that cubic rings are parametrized by binary cubic forms. (A cubic ring
is a ring whose additive structure is a free rank 3 Z-module, and a binary cubic
form is a polynomial f = ax3 + bx2y + cxy2 + dy3 with integral coefficients.) Cubic
rings, up to isomorphism, are in natural bijection with GL2(Z)-classes of binary cubic
forms (where GL2(Z) acts by change of coordinates of x and y). If we prefer to
think geometrically, a cubic ring is just a finite flat degree three cover of Spec Z. A
parametrization similar to that of Delone and Faddeev [21] was proven by Miranda
[32] for finite flat degree three covers of an irreducible scheme over an algebraically
closed field of characteristic not 2 or 3. Though these correspondences were originally
given by writing down a multiplication table for the cubic ring (or ring of global
functions of the cubic cover), it is shown in Chapter 3 that when f 6= 0, the cubic ring
corresponding to an integral binary cubic form is simply the ring of global functions
of the subscheme of P1

Z cut out by f . (Casnati and Ekedahl [14] give this sort of
geometric construction of finite flat degree three Gorenstein covers of an integral base
scheme, and so in Chapter 3 we have also shown that their construction agrees with
Miranda’s.)

In this paper, we study quartic rings, or equivalently, finite flat degree four cov-
ers of a base scheme. Casnati and Ekedahl [13] parametrize finite flat degree four
Gorenstein covers of an integral base scheme by global sections of certain locally
free sheaves, with a codimension condition on the section at every point of the base.
Casnati [14] also gives a construction of a finite flat degree three discriminant cover
corresponding to a finite flat degree four Gorenstein cover of an integral scheme over
an algebraically closed field of characteristic not equal to 2. Recently, quartic rings
over Z, or finite flat degree four covers of Spec Z, have been parametrized by Bhargava
[6]. More precisely, isomorphism classes of pairs (Q,C), where Q is a quartic ring
over Z and C is a resolvent ring of Q, are in natural bijection with GL2(Z)×GL3(Z)-
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classes of pairs of integral ternary quadratic forms. Cubic resolvent rings will be
defined in Section 6.3 as models of the classical cubic resolvent field of a quartic field.
The definition will agree with the construction of Casnati in the cases studied in [14].

A pair of integral ternary quadratic forms can be represented by a pair of matrices
(A,B), where

A =

a11
a12

2
a13

2
a12

2
a22

a23

2
a13

2
a23

2
a33

 B =

b11 b12
2

b13
2

b12
2

b22
b23
2

b13
2

b23
2

b33


with aij, bij ∈ Z. Here A represents the form

∑
1≤i≤j≤3 aijxixj and B represents∑

1≤i≤j≤3 bijxixj. Then GL3(Z) acts by conjugating the two matrices and GL2(Z)
acts on the pair by ( g11 g12

g21 g22 ) ∈ GL2(Z) sending (A,B) to (g11A+ g12B, g21A+ g22B).
Maximal quartic rings have a unique resolvent ring, and so at least for maximal rings,
Bhargava’s result can be seen as a parametrization of quartic rings over Z.

Bhargava, in [6], describes the relationship between quartic rings with cubic re-
solvents and pairs of ternary quadratic forms by giving the multiplication tables for
the quartic and cubic rings explicitly in terms of the coefficients of the forms. In this
chapter, we give a geometric, coordinate-free description of a quartic ring Q given by
a pair (A,B). For the nicest pairs (A,B), we have that A and B give a pencil of
conics in P2

Z and the quartic ring is given by the global functions of the subscheme
cut out by the pencil. Casnati and Ekedahl [13] give this construction in the case
when the quartic ring is Gorenstein. Deligne, in a letter [20] to Bhargava, gives this
construction when the generic conic in the pencil is non-singular (over each geometric
point of Spec Z), and proves that it extends to all pairs of ternary quadratic forms.
Our geometric description works for all pairs of ternary quadratic forms, and also
explains what ring Q is even when it not given by the expected global functions, for
example when all of the entries of A and B have a common factor, when the conics
given by A and B share a component, or when A and B are both 0!

We prove that our geometric construction agrees with explicit description of Bhar-
gava in [6] of a quartic ring Q given by formulas for a multiplication table with respect
to basis elements of Q. Such a global geometric description (which works even when
f = 0) has been given for rings from cubic forms in Chapter 3. In fact, Chapter 3
gives such a description of a ring from a binary form of any degree. As in the descrip-
tion of a ring from a binary cubic (or n-ic), the description of a quartic ring from a
pair (A,B) uses hypercohomology, which is the cohomology of a complex of sheaves.

Our geometric construction of a quartic ring from a pair of ternary quadratic forms
in fact works when Z is replaced by an arbitrary commutative base ring R, or even
a scheme S. We prove that our geometric construction commutes with base change
in the base scheme S. This allows us to give a parametrization of quartic rings (with
cubic resolvents) over any scheme S, or in other words, determine the structure of
the moduli stack of quartic rings with cubic resolvents.

Remark 6.1.1. Some of the geometric language of this chapter makes it more natural
to work over a scheme S, but all of our work includes the case S = SpecR, in which
case we are simply working over a ring R. The reader mainly interested in a base ring
can replace OS with R and “global section” with “element” throughout the chapter.
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The most important change from Z to a scheme S is that previously we considered
quartic rings which were free rank 4 Z-algebras, and a quartic ring Q over a scheme S
is an OS-algebra such that Q/OS is a locally free rank 3 OS-module (and in particular
Q is a locally free rank 4 OS-module). Of course, over Z all locally free modules are
free, and this definition over Z agrees with the earlier definition of a quartic ring. The
forms we must consider change similarly. We could view a pair of ternary quadratic
forms over Z as a single form

∑
1≤i≤j≤3 aijxixjy+

∑
1≤i≤j≤3 bijxixjz. Then we can

view the GL2(Z) action as a change of basis on the free Z-module generated by y
and z and the GL3(Z) action as a change of basis on the free Z-module generated
by x1, x2, and x3. We replace the free modules over Z with locally free modules
over S and get the following definition. A double ternary quadratic form over S
is a locally free rank 3 OS-module W , a locally free rank 2 OS-module U , and a
global section p ∈ Sym2W ⊗ U , and an orientation isomorphism ∧3W ⊗ ∧2U ∼= OS.
Certain double ternary quadratic forms are the objects that parametrize finite flat
degree four Gorenstein covers of an integral base scheme in the work of Casnati and
Ekedahl [13]. One reason to fix an orientation is so that double ternary quadratic
forms won’t have a GL1 of automorphisms given by acting by (λ−2, λ) ∈ GL2×GL3.
The orientation is a phenomenon that it is hard to see over Z because GL1(Z) is so
small. An isomorphism of double ternary quadratic forms (W,U, p) and (W ′, U ′, p′)
is given by isomorphisms W ∼= W ′ and U ∼= U ′ that send p to p and respect the
orientation. Since in this framework, we don’t have a pair of anything, we change the
terminology from “pair of” to “double,” but a double ternary quadratic form over Z is
the same as a pair of ternary quadratic forms over Z. Moreover, isomorphism classes of
double ternary quadratic forms over Z correspond exactly to GL2(Z)×GL3(Z)-classes
of pairs of ternary quadratic forms over Z. (More precisely, if Γ is the subgroup of
GL2(Z)×GL3(Z) of elements (g1, g2) such that det(g1) det(g2) = 1, then isomorphism
classes of double ternary quadratic form over Z correspond exactly to Γ-classes of pairs
of ternary quadratic forms over Z. However, it turns out that since −I ∈ GL3(Z)
acts trivially on pairs of ternary quadratic forms, the Γ classes are the same as the
GL2(Z)×GL3(Z) classes.

In Section 6.7, we prove the following theorem which generalizes the bijection [6,
Theorem 1] from Z to an arbitrary base scheme and the bijection [13, Theorem 4.4]
for finite flat degree four Gorenstein covers to all finite flat degree four covers with
cubic resolvents and from an integral base scheme to an arbitrary base scheme.

Theorem 6.1.2. Over a scheme S, there is a bijection between isomorphism classes
of double ternary quadratic forms and pairs (Q,C) where Q is a quartic ring over S
and C is a cubic resolvent of Q. This bijection is functorial in S. In other words,
there is an isomorphism between the moduli stack of double ternary quadratic forms
and the moduli stack of pairs (Q,C) where Q is a quartic ring and C is a cubic
resolvent of Q.

Resolvent rings are defined in Section 6.3; they are an analog over an arbitrary
base of the classical cubic resolvent field of a quartic field.

This chapter gives two descriptions of the bijection in Theorem 6.1.2. In Sec-
tion 6.4 we give a global, geometric, coordinate free description of (Q,C) from a
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double ternary quadratic form, which in the nicest cases over a ring R says that Q
is the global functions of the scheme cut out by the form. In Section 6.5, we give an
explicit local description of (Q,C) in terms of bases and multiplication tables. Once
Q and C have the correct module structure, the local multiplication tables can be
read off from the formulas given in Bhargava’s work [6].

The key idea in this chapter is the geometric construction over arbitrary base of
a quartic ring from a double ternary quadratic form in Section 6.4. The geometric
construction we give is similar to, but more complicated than, the construction of
a rank n-ring from a binary n-ic form in Chapter 3. A binary n-ic form over S
cuts out a subscheme of P1

S and we can usually take the pushforward of the regular
functions on that subscheme to be our rank n ring over S. To obtain a construction
that works in all cases and is functorial in the base, we instead had to take the 0th
hypercohomology of a complex given by the binary n-ic form. In fact, it was the
Kozul complex, though since it only had two terms it was too simple to recognize
as such. In general, a double ternary quadratic form, locally on the base, gives two
conics in P2 which intersect to give a subscheme of P2. We wish, heuristically, to take
the ring of regular functions of this subscheme. As in the case of binary n-ic forms,
to get a construction that works in all cases and is functorial in the base, we take the
0th hypercohomology of the Kozul complex given by the double ternary quadratic
form. This always gives a quartic algebra over the base.

In Section 6.2, we review the theorems about binary cubic rings over Z and an
arbitrary base. This is not only motivation for our study of quartic rings, but also
is important background for the results in this chapter because the resolvent C of a
quartic ring Q is a cubic ring. In Section 6.3 we give the definition of a general cubic
resolvent ring. In Section 6.6, we give the construction of a cubic resolvent ring from
a double ternary quadratic form.

Notation. If F is a sheaf, we use s ∈ F to denote that s is a global section of F . If
V is a locally free OS-module, we use V ∗ to denote the OS-module HomOS

(V,OS).
We use Symn V to denote the usual quotient of V ⊗n, and Symn V to denote the
submodule of symmetric elements of V ⊗n.

Normally, in the language of algebra, one says that an R-module M is locally free
of rank n if for all prime ideals ℘ of R, the localization M℘ is free of rank n. However,
if we have a scheme S and an OS-module M , we normally say that M is locally free
of rank n if on some open cover of S it is free of rank n; in the algebraic language this
is equivalent to saying that for every prime ideal ℘ of R, there is an f ∈ R \ ℘ such
that the localization Mf is free of rank n. In this thesis we shall use the geometric
sense of the term locally free of rank n. The geometric condition of locally free of
rank n is equivalent to being finitely generated and having the algebraic condition of
locally free of rank n.
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6.2 The parametrization of cubic rings

In this section, we review the parametrization of cubic rings. Over Z, this was first
worked out in [21] (see also [17] and [24]).

Given a base scheme S, a cubic ring C over S is a OS-algebra such that C/OS

is a locally free rank 2 OS-module. A binary cubic form is a locally free rank 2
OS-module V and an element f ∈ Sym3 V ⊗ ∧2V ∗, and an isomorphism of binary
cubic forms (V, f) ∼= (V, f ′) is given by an isomorphism V ∼= V ′ that takes f to f ′.
(Normally, we would call these twisted binary cubic forms but since they are the only
binary cubic forms in this chapter, we will use the shorter name for simplicity.) Of
course, if V is the free rank 2 OS-module OSx ⊕ OSy, then the binary cubic forms
f ∈ Sym3 V ⊗∧2V ∗ are just polynomials (ax3 + bx2y + cxy2 + dy3)⊗ (x∧ y)∗, where
a, b, c, d ∈ OS.

Over an arbitrary base, Deligne wrote a letter ([19]) to the authors of [24] giving
the following theorem.

Theorem 6.2.1. Over a scheme S, there is a bijection between isomorphism classes of
binary cubic forms and cubic rings. This bijection is functorial in S. If a cubic ring C
corresponds to a binary cubic form (V, f), then as OS-modules, we have C/OS

∼= V ∗.

Miranda [32] also gives this bijection over a base which is an irreducible scheme
over an algebraically closed field of characteristic not equal to 2 or 3. This bijection
is studied and proven as part of a series of bijections involving binary forms of any
degree in Chapter 3. We give a simple proof here for completeness.

Proof. Given a cubic ring C, we can define an OS-module V = (C/OS)∗. Then,
where C is a free OS-module, we can choose a basis 1, ω, θ for C and then shift ω and
θ by elements of OS so that ωθ ∈ OS. Then, the associative law implies that we have
a multiplication table

ωθ = −ad
ω2 = −ac+ bω − aθ (6.1)

θ2 = −bd+ dω − cθ,

where a, b, c, d ∈ OS. Let x, y be the basis of V dual to ω, θ. Then we can define
a form (ax3 + bx2y + cxy2 + dy3) ⊗ (x ∧ y)∗ ∈ Sym3 V ⊗ ∧2V ∗. We can check that
if we pick another basis 1, ω′, θ′ (also normalized so that ω′θ′ ∈ OS) and another
corresponding x′ and y′ we would define the same form in Sym3 V ⊗ ∧2V ∗. Thus
the form is defined everywhere locally in a way that agrees on overlapping open sets,
and we have constructed a global binary cubic form (V, f). Deligne in [19] gives a
different, geometric construction in the case when C is Gorenstein and then argues
that the construction extends across the non-Gorenstein locus.

In [5, Footnote 3], the following algebraic, global, coordinate free description of
the construction is mentioned. Given an algebra C, we can define an OS-module
V = (C/OS)∗, and an OS-module homomorphism Sym3C/OS → ∧2C/OS given by
xyz 7→ x ∧ yz. One can check that this map is well-defined, and so it gives a binary
cubic form f ∈ (Sym3C/OS)∗ ⊗ ∧2C/OS

∼= Sym3 V ⊗ ∧2V ∗.
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On the other hand, given a binary cubic form (V, f), we can construct an OS-
module C = OS ⊕V ∗. Then, everywhere locally where V is free on basis x and y, we
can write f = (ax3 + bx2y + cxy2 + dy3)⊗ (x ∧ y)∗ where a, b, c, d ∈ OS. If we let ω
and θ be a dual basis to x, y, then we can locally give C a multiplication table by

ωθ = −ad
ω2 = −ac+ bω − aθ (6.2)

θ2 = −bd+ dω − cθ,

and (1, 0) ∈ OS ⊕ V ∗ is the multiplicative identity. We can check that if we chose
another basis for V and corresponding basis for C, we would get the same ring
structure on C. Thus, C is defined as a cubic ring everywhere locally in a way that
agrees on overlapping open sets, and we have constructed a global cubic ring C.

These contructions are clearly inverses and functorial in S.

In this proof, we have given the construction of the bijection locally in terms of
bases with explicit formulas. However, it is hard to see where the formula for the
multiplication table came from or why the local constructions are invariant under
change of basis. The following global description is given by Deligne in his letter [19],
and in Chapter 3 it is shown that this description is same as the explicit description
given in the proof above. Given a binary form f ∈ Sym3 V ⊗ ∧2V ∗ over a base
scheme S, the form f determines a subscheme Sf of P(V ) (where we define P(V ) =
Proj Sym∗ V ). Let π : P(V ) → S. Let O(k) denote the usual sheaf on P(V ) and
OSf

(k) denote the pullback of O(k) to Sf . Then we can define the OS-algebra by the
hypercohomology

C := H0Rπ∗

(
O(−3)⊗ π∗ ∧2 V

f→ O
)
, (6.3)

where O(−3)⊗ π∗ ∧2 V
f→ O is a complex in degrees -1 and 0. The product on C is

given by the natural product of the complex O(−3) ⊗ π∗ ∧2 V
f→ O with itself and

the OS-algebra structure is induced from the map of O as a complex in degree 0 to

the complex O(−3)
f→ O. (Note that R0π∗(O) = OS.)

Given a map of schemes X
π→ S, the construction of global functions of X relative

to S is just the pushforward π∗(OX). So the natural notion of global functions of Sf

relative to S would be π∗ of OSf
. We have that OSf

= OS/f(O(−3) ⊗ π∗ ∧2 V ).
When f is injective, then OSf

= OS/f(O(−3) ⊗ π∗ ∧2 V ) as a complex in degree

0 is homotopy equivalent to O(−3) ⊗ π∗ ∧2 V
f→ O as a complex in degrees -1 and

0. Thus we see when f is injective that C is just π∗(OSf
). When f gives an

injective map and S = SpecR then C is just the ring of global functions of Sf .
Unfortunately, this simpler construction does not give a cubic algebra where f = 0.
When f = 0, then Sf = P1 and the global functions are a rank 1 OS-algebra, i.e. OS

itself. Hypercohomology is exactly the machinery we need to naturally extend our
construction to all f .
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6.3 Cubic resolvent rings

Bhargava discovered that to obtain a nice parametrization of quartic rings, one must
parametrize them along with their cubic resolvent rings. One could also take a similar
point of view on cubic rings, but it turns out that every cubic ring has a unique
quadratic resolvent ring and so the parametrization does not change from the above.
All quartic rings over Z have at least one cubic resolvent, and many quartic rings
(e.g. maximal quartic rings over Z) have a unique cubic resolvent.

We now give the definition of a cubic resolvent ring, given in [6, Definition 20] over
Z. The definition might seem complicated at first, but we will explain each aspect of
it.

Definition. Given a quartic ring Q over a base scheme S, a cubic resolvent C of Q
is

• a cubic ring C over S (i.e. an OS-algebra such that C/OS is a locally free rank
2 OS-module)

• a quadratic map φ : Q/OS → R/OS, and

• an orientation isomorphism δ : ∧4Q ∼= ∧3C (or equivalently δ̄ : ∧3Q/OS
∼=

∧2C/OS)

such that

1. for any open set U ⊂ S and for all x, y ∈ Q(U), we have δ(1 ∧ x ∧ y ∧ xy) =
1 ∧ φ(x) ∧ φ(y)

2. R is the cubic ring corresponding to Det(φ).

A quadratic map from A to B is given by anOS-module homomorphism Sym2A→
B evaluated on the diagonal (see the Appendix Section 6.8.1). (In Chapter 2 it is
shown this is equivalent to the more classical notion of a quadratic map.) The map φ
models the map from quartic fields to their resolvent fields given by x 7→ xx′ + x′′x′′′,
where x, x′, x′′, x′′′ are the conjugates of an element x. In [6, Lemma 9] it is shown
that condition 1 above holds for such classical resolvent maps, and it turns out that
condition 1 is the key property of resolvent maps that allows them to be useful in the
parametrization of quartic rings. So our definition of resolvent allows all quadratic
maps that have this key property.

Another important property of the cubic resolvent over Z is that the discriminant
of the cubic resolvent is equal to the discriminant of the quartic ring. In [6], this
is a crucial part of the definition of a cubic resolvent over the integers. With the
above formulation of the definition of a cubic resolvent, the equality of discriminants
follows as a corollary of properties 1 and 2. However, since the discriminant of a ring
R of rank n lies in (∧nR)⊗−2, we need the orientation isomorphism to even state the
question of the equality of discriminants.
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The quadratic map φ is equivalent to a double ternary quadratic form in the
module Sym2(Q/OS)∗⊗R/OS. The determinant of a double ternary quadratic form
is given by a natural cubic map from Sym2W ⊗ V to (∧3W )⊗2 ⊗ Sym3 V . We
have a natural cubic determinant map from Sym2W to (∧3W )⊗2. For free W and an
element of Sym2W represented by the matrix

A =

a11
a12

2
a13

2
a12

2
a22

a23

2
a13

2
a23

2
a33

 ,

the map is given by the polynomial 4 Det(A), and since this is invariant under GL3

change of basis, it defines a determinant map for all locally free W . We can extend
to a cubic determinant map from Sym2W ⊗ V to (∧3W )⊗2 ⊗ Sym3 V by using the
elements of V as coefficients (see Appendix Section 6.8.2). Thus the determinant of φ
lies in (∧3Q/OS)⊗−2⊗Sym3(C/OS), which is isomorphic to (∧2C/OS)⊗Sym3(C/OS)∗

by the orientation isomorphism and Corollary 6.8.1 in the Appendix (Section 6.8).
When we speak of a pair (Q,C) of a quartic ring Q and a cubic resolvent C of Q,

the maps φ and δ are implicit. An isomorphism of pairs is given by isomorphisms of
the respective rings that respect φ and δ.

6.4 The geometric construction

In this section, we will construct a quartic ring from a double ternary quadratic form
p ∈ Sym2W ⊗ U over a base S. We consider the map π : P(W )→ S, and the usual
line bundles O(k) on P(W ). We can view p as a two dimensional family of quadratic
forms on P(W ) (the two dimensions being given by U). More precisely, since p is
equivalent to a map U∗ → Sym2W , we get a naturally induced map π∗U∗ → O(2),
which is equivalent to a map p1 : π∗U∗ ⊗O(−2) → O. The image of p1 is functions
that are zero on the space cut out by the forms of p. The regular functions on the
scheme cut out by p are just given by O/ im(p1). From p we can construct one more
map to make the Kozul complex of p, given as follows

Kp : ∧2π∗U∗ ⊗O(−4)
p2−→ π∗U∗ ⊗O(−2)

p1−→ O.

The complex Kp has O in the 0th place, and the other two terms in places −1
and −2. We can construct p2 similarly to p1 since p is also equivalent to a map
∧2U∗ ⊗ U → Sym2W . (Recall ∧2U∗ ⊗ U ∼= U∗; see Lemma 3.7.4.) One can read
about the construction of all the maps in the Kozul complex in [23, Appendix A2H].
For sufficiently generic p the Kozul complex will be exact in all places except the
last and thus give a resolution of O/ im(p1). For example, this it true when p is the
universal double ternary quadratic form over the polynomial ring in twelve variables.
In the sufficiently generic case, p will cut out four (relative) points in P(W ) (i.e. a
finite flat degree four S-scheme) and the pushforward of the global functions of those
points will give us a quadratic algebra over the base S.
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Example 6.4.1. Suppose U is free with basis x, y, and dual basis ẋ and ẏ. Then we
can write p = f1 ⊗ x+ f2 ⊗ y. The map p1 just sends ẋ⊗ g 7→ f1g and ẏ ⊗ g 7→ f2g.
We can write how p1 acts on a general element as a⊗ g 7→ gp(a), where p acts on an
element of U∗ by evaluating the U components of p at the given element of U∗. The
map p2 sends ẋ ∧ ẏ ⊗ g 7→ gf1 ⊗ ẏ − gf2 ⊗ ẋ. We can write how p2 acts on a general
element as a∧ b⊗ g 7→ b⊗ gp(a)− a⊗ gp(b). From this we see that Kp is a complex.

When p is not so generic, for example in the extreme case where p = 0, then
the forms given by p will not cut out four points and thus the functions on the
corresponding subscheme will not pushforward to a quartic algebra. So instead of
taking the pushforward of the global functions of the scheme cut out by p, we will take
the 0th hypercohomology of the complex Kp. We define Qp to be H0Rπ∗(Kp), where
Rπ∗ denotes the pushforward of the complex in the derived category. Alternatively,
we can view the construction as the hypercohomological derived functor of π∗, where
the hypercohomology is necessary since we are operating on a complex and not just
a single sheaf. If p is sufficiently generic, then Kp will be homotopy equivalent to
the complex O/ im(p1) in degree 0 and Qp will just be π∗(O/ im(p1)). However,
what is nice about the hypercohomology construction is that Qp will be a quartic
algebra even when p is not sufficiently generic (as we’ll see in Section 6.4.2). So far
we have constructed Qp as an OS-module, However, the Kozul complex has a natural
differential graded algebra structure, and that gives the cohomology an inherited
algebra structure. Thus Qp is naturally an OS-algebra.

Theorem 6.4.2. The construction of Qp commutes with base change in S.

Proof. To prove this theorem, we need to compute all of the cohomology of Kp. The
complex Kp has no cohomology in degrees other than 0. We have Rk(O(−4)) = 0
for k 6= 2, and Rkπ∗(O(−2)) = 0 for all k, and Rkπ∗(O) = 0 for k 6= 0. Thus
HkRπ∗(Kp) = 0 for k 6= 0. In Section 6.4.2, we will see that H0Rπ∗(Kp) is locally free.
Thus since all H iRπ∗(Kp) are flat, by [26, Corollaire 6.9.9], we have that cohomology
and base change commute.

6.4.1 Comparing the cohomological construction and global
functions

When constructing the cubic ring from a binary cubic form, we took

H0Rπ∗(O(−3)
f−→ O)

on P(V ), which, as long as the cubic form f gives an injective map above is the
same as π∗(O/ im f). For example, when the base S is integral, whenever f 6= 0 then

O(−3)
f−→ O is injective. However, when f = 0, of course O(−3)

f−→ O is not injective,

and H0Rπ∗(O(−3)
f−→ O) is not the same as π∗(O/ im f). When f = 0, the latter is

an OS-module of rank 1.
Again, when constructing our quartic ring as H0Rπ∗(Kp), if p = 0 the complex

will not be a resolution and H0Rπ∗(Kp) won’t agree with π∗(O/ im p1). This is the
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case when both “conics” are given by the 0 form. However, even over an integral
base, there are now more situations on which the complex Kp is not a resolution. The
geometric constructions of Casnati and Ekedahl [13] and Deligne [20] for certain nice
quartic rings are in the case when π∗(O/ im p1) simply gives the quartic ring.

Recall the case where U is free, considered in Example 6.4.1, and for simplicity
we consider W free as well. If f1 and f2 have some common linear factor `, then
ẏ ⊗ f1/` − ẋ ⊗ f2/` ∈ π∗U∗ ⊗ O(−2) goes to 0 under p1, but it is not in the image
of p2. This is the case when both conics are a pair of lines and they share a common
line. If f1 = 0, then ẋ ⊗ g ∈ π∗U∗ ⊗ O(−2) goes to 0 under p1 even though it isn’t
necessarily in the image of p2. This is the case when one “conic” is given by the zero
form, or more generally the case where the two conics are the same. So, there are
now several ways in which the complex Kp might not be a resolution, and therefore
the algebra Qp won’t just be π∗(O/ im p1).

6.4.2 Module structure of Qp

In this section, we determine the OS-module structure of Qp. We consider the short
exact sequence of complexes O → A→ Kp → D → 0, where

A : 0 // π∗U∗ ⊗O(−2)
p1

// O

Kp : ∧2π∗U∗ ⊗O(−4)
p2

// π∗U∗ ⊗O(−2)
p1

// O

B : ∧2π∗U∗ ⊗O(−4) // 0 // 0.

From this short exact sequence we get a long exact sequence of hypercohomology
sheaves on S, of which we consider the following part

H−1Rπ∗(B) // H0Rπ∗(A) // H0Rπ∗(Kp) // H0Rπ∗(B) // H1Rπ∗(A).

Qp

This sequence will allow us the determine the modules structure of Qp once we com-
pute the other terms. It is natural to shift the term in B to the 0 place and obtain

R1π∗(∧2π∗U∗ ⊗O(−4)) // H0Rπ∗(A) // Qp
// R2π∗(∧2π∗U∗ ⊗O(−4)) // H1Rπ∗(A).

0 W ∗ ⊗ ∧3W ∗ ⊗ ∧2U∗
∼=��

W ∗

We can analyze the A terms by putting the complex A in its own short exact sequence
of complexes 0→ D → A→ E → 0, given by the following

D : 0 // O

A : π∗U∗ ⊗O(−2)
p1

// O

E : π∗U∗ ⊗O(−2) // 0.
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Taking the long exact sequence for this short exact sequence of complexes gives

H−1Rπ∗(E)→ H0Rπ∗(D)→ H0Rπ∗(A)→ H0Rπ∗(E)
→ H1Rπ∗(D)→ H1Rπ∗(A)→ H1Rπ∗(E),

or

R0π∗(π
∗U∗ ⊗O(−2)) // R0π∗(O) // H0Rπ∗(A) // R1π∗(π

∗U∗ ⊗O(−2))

0 OS 0

and
R1π∗(O) // H1Rπ∗(A) // R2π∗(π

∗U∗ ⊗O(−2)).

0 0

Thus, we conclude that H0Rπ∗(A) ∼= OS and H1Rπ∗(A) = 0.
Going back to our original long exact sequence, we have

0→ OS → Qp → W ∗ → 0.

This proves that Qp is a locally free rank 4 OS-module. Also, it gives us the necessary
map OS → Qp for our algebra to have a unit. (We can check this map respects the
algebra structures because it is induced from the map of complexes D → Kp that
respects the differential graded algebra structures on D and Kp.)

6.5 Local construction by multiplication table

Given a double ternary quadratic form p ∈ Sym2W ⊗U (with a given ∧3W ∼= ∧2U∗),
now that we know that there is a natural quartic algebra structure of OS ⊕W ∗ we
could define the structure locally by giving multiplication tables. For free W and U ,
we could define an algebra structure on OS ⊕W ∗ in terms of the coefficients of p.
Then, if we checked that this structure respected change of basis of W and U (at least
those respecting the isomorphism ∧3W ∼= ∧2U∗), we will have given a construction
of a quartic algebra over S from any double ternary quadratic form p ∈ Sym3W ⊗U .
This local construction repsects base change almost by definition.

For a double ternary quadratic form over Z (and therefore with W and U nec-
essarily free), Bhargava [6, Equations (15) and (21)] gives a ring structure on Z4

whose multiplication table is given in terms of the coefficients of p. Each entry in the
multiplication table is a polynomial in the coefficients of p. This, of course, is the mul-
tiplication table we would impose for free W and U in the above local construction.
We will now see that this local construction agrees with the geometric construction
we have given in Section 6.4. We will show this by working over the universal ring
R = Z[{aij, bij}1≤i≤j≤3] for double ternary quadratic forms, and with the universal
free form u =

∑
1≤i≤j≤3 aijxixjy1 + bijxixjy2.

Theorem 6.5.1. For the universal form u, the quartic algebra Qu is isomorphic
to the quartic ring over R that is constructed above using Bhargava’s multiplication
tables.
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In particular, since our geometric construction of Qu is invariant under change
of basis of W and U (respecting ∧3W ∼= ∧2U∗), this gives a proof of the invari-
ance of Bhargava’s multiplication table under change of basis, as long as the correct
GL3×GL2 action is used. Since all double ternary quadratic forms are locally pull-
backs from the universal form, and both the local construction by multiplication
tables and the global geometric construction of Section 6.4 respect base change, The-
orem 6.5.1 implies that the two constructions of quartic algebras from double ternary
quadratic forms agree. We now prove Theorem 6.5.1.

Proof. For the universal form u, the complex Ku used to define Qu is exact, and
therefore Qu is just the global functions on the scheme Su in P2

R cut out by A =∑
1≤i≤j≤3 aijxixj and B =

∑
1≤i≤j≤3 bijxixj. (We can just work in terms of global

functions instead of the pushforward to the base since the base SpecR is affine.
Moreover, the multiplicative structure of the global functions of Su is the same as
the induced multiplicative structure on the hypercohomological construction of Qu.)
We cover Su with open sets Uxi

coming from the usual open sets in P2
R. As a first

step, we will find (f, g) ∈ Γ(Uxi
) × Γ(Uxj

) such that f = g in Γ(Uxi
∩ Uxj

). This
will find all regular functions on Uxi

∪ Uxj
, and it will turn out that they all extend

uniquely to global functions on Su. Thus, we will have found all the regular functions
on Su. We will identify these regular functions with the basis in Bhargava’s quartic
ring construction, and then it can be checked that the multiplication tables agree.

Let i, j, k be some permutation of 1, 2, 3. We have that

Γ(Uxi
) = R[xj/xi, xk/xi]/(A/x

2
i , B/x

2
i ),

and similarly for Γ(Uxj
). Let Ii be the ideal (A/x2

i , B/x
2
i ) of R[xj/xi, xk/xi], and

similarly for Ij. Also, Γ(Uxi
∩ Uxj

) = R[xj/xi, xk/xi, xi/xj]/(A/x
2
i , B/x

2
i ). If we

have (f, g) ∈ Γ(Uxi
) × Γ(Uxj

) such that f = g in Γ(Uxi
∩ Uxj

), then f and g are

represented by polynomials f̃ ∈ R[xj/xi, xk/xi] and g̃ ∈ R[xi/xj, xk/xj] such the
element f̃ − g̃ ∈ R[xj/xi, xk/xi, xi/xj] is in the ideal I = (A/x2

i , B/x
2
i ). However,

f̃ − g̃ will not have any terms with an xi and an xj in the denominator. We define T1

to be the sub R-module of I of elements that do not have any terms with both an xi

and an xj in the denominator. The set T1 gives all the relations between polynomials
representing elements in Γ(Uxi

) and polynomials representing elements in Γ(Uxj
). We

define T2 to be the sub R-module of T1 generated by the images of Ii and Ij under
their natural inclusion into R[xj/xi, xk/xi, xi/xj]. The set T2 gives all the relations
of T1 that come from relations already in Uxi

and already in Uxj
. We now seek to

determine T1/T2, which gives rise to all pairs (f, g) ∈ Γ(Uxi
)×Γ(Uxj

) such that f = g
in Γ(Uxi

∩ Uxj
) that are not functions on the base SpecR.

We first define some notation to help us write down elements of T1/T2. Let

Aimjn = A
xm+n−2

k

xm
i xn

j
, where the subscript imjn is a product of formal symbols, where a

missing exponent denotes an exponent of 1. We define Bimjn analogously.
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Lemma 6.5.2. Let t ∈ T1/T2. We can write

t =
∑

m,n≥1

m+n≤3

cm,nAimjn + dm,nBimjn with cm,n, dm,n ∈ R.

Proof. Clearly we can write any t in I as such as sum over m,n ∈ Z with m+ n ≥ 2.
Any term with m ≤ 0 is in the image of Ij and thus in T2, and any term with n ≤ 0
is in the image of Ii and thus in T2. It remains to show that we do not need terms
with m+ n ≥ 4 in order to represent t.

We suppose for the sake of contradiction that a term with m+n ≥ 4 was required,
and we take a t with m + n maximal for this condition, and m maximal given that.
Then cm,nAimjn contributes a xm+n

k /xm
i x

n
j term with coefficient cm,nakk and dm,nBimjn

contributes xm+n
k /xm

i x
n
j term with coefficient dm,nbkk. No other terms of the summand

for t can contribute a term with xm
i x

n
j in the denominator, and so we must have

cm,n = rbkk and dm,n = −rakk for some element r ∈ R.
Now we claim we did not need to use the terms rbkkAimjn − rakkBimjn in the sum

that represents t. To prove this claim, we use the following identity

bkkAimjn − akkBimjn

=− bikAim−1jn + aikBim−1jn − bjkAimjn−1 + ajkBimjn−1 + aijBim−1jn−1

− bijAim−1jn−1 − bjjAimjn−2 + ajjBimjn−2 − bi,iAim−2jn + aiiBim−2jn .

This proves the lemma.

The above lemma tells us that every element of T1/T2 can be written as a R lin-
ear combination of Aij, Bij, Ai2j, Bi2j, Aij2 , and Bij2 . Since only Ai2j and Bi2j have
terms with x2

ixj in the denominator, we must have that Ai2j and Bi2j appear with
coefficients c2,1 and d2,1 so as to cancel those terms out. We can argue similarly for
Aij2 and Bij2 . Thus, every element of T1/T2 can be written as a R linear combi-
nation of Aij, Bij, bkkAi2j − akkBi2j, and bkkAij2 − akkBij2 . We note that all four of
Aij, Bij, bkkAi2j − akkBi2j, and bkkAij2 − akkBij2 have terms with a xixj denominator.

We define some notation so we can write combinations of these elements down
more easily. For i < j, let aji = aij. Let λ`1`2

`3`4
= a`1`2b`3`4 − b`1`2a`3`4 . We note that

Hi,j =bkkAi2j − akkBi2j + bikAij − aikBij

=λjj
kkxjxk/x

2
i + λij

kkxk/xi + λii
kkxk/xj + λjk

kkx
2
k/x

2
i + λjj

ikxj/xi

+ λij
ik + λii

ikxi/xj + λjk
ikxk/xi

and

Hj,i = bkkAij2 − akkBij2 + bjkAij − ajkBij

do not have any terms with both xi and xj in the denominator. Every element of
T1/T2 can be written as a R linear combination of Aij, Bij, Hi,j and Hj,i, because this
is just a unipotent triangular transformation of the last list of four generators. We
have seen that Hi,j and Hj,i have no x2

k/xixj terms, and Aij and Bij have x2
k/xixj
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terms with coefficients akk and bkk respectively. Since an element of t does not have
a term with xixj in the denominator, it can be written as a linear combination of
Hi,j, Hj,i and Fij = Fji = bkkAij − akkBij. Moreover, Hi,j, Hj,i and Fij are all in T1.
We now define hi,j to be the sum of terms in Hi,j that do not have an xj in the
denominator, and hi,j = Hi,j − hi,j. We define fij = fji to be the sum of terms in Fij

with xi in the denominator, so that fij + fji + λij
kk = Fij.

We have now found that the pairs (f, g) ∈ Γ(Uxi
) × Γ(Uxj

) such that f = g in
Γ(Uxi

∩ Uxj
) can be written in terms of four R-module generators:

(1, 1), (hi,j,−hi,j), (hj,i,−hj,i), (fij,−fji + λkk
ij ).

Letting i and j vary, this information is enough to determine the global functions on
Su. In this case, it turns out that the regular functions on Uxi

that can be extended
to Uxj

are exactly the same as the regular functions on Uxi
that can be extended to

Uxk
. In particular, in the polynomial ring R[xj/xi, xk/xi], we can compute that

hi,j + hi,k = λii
jk + ajkB/x

2
i − bjkA/x2

i

and
hj,i = −fik.

Moreover, it will turn out that the extensions to Uxj
and Uxk

agree on their inter-
section. We see that the global functions of Su are generated as a R-module by four
generators g1, g2, g3, g4 ∈ Γ(Ux1) × Γ(Ux2) × Γ(Ux3), whose components are given in
the below table.

Γ(Ux1) Γ(Ux2) Γ(Ux3)

g1 1 1 1

g2 h1,2 = −h1,3 + λ11
23 −h1,2 = f23 −f32 + λ11

23 = h1,3 + λ11
23

g3 h2,1 = −f13 −h2,1 = h2,3 + λ13
22 −h2,3 + λ13

22 = f31 + λ13
22

g4 f12 = −h3,1 −f21 + λ33
12 = h3,2 + λ33

12 −h3,2 + λ33
12 = h3,1

We now show that the gi are generators for a free R-module of rank 4. Suppose
for the sake of contradiction that there was a relation among these generators. Then
over the generic point of R the global functions of Su would be a vector space of at
most dimension 3. But we know from Section 6.4.2 that the global functions of Su are
locally free four dimensional R module, and thus will be a four dimensional vector
space over the generic point of SpecR.

To construct the multiplication table on our four generators gi of the global func-
tions on Su, we can reduce to finding a multiplication table in the Γ(Ux1) component,
since the gi are R-linearly independent even in this component. We can further reduce
to finding the multiplication table over the generic point of SpecR. We first construct
a multiplication table on 1, x2/x1, x3/x1, x2x3/x

2
1 over the generic point of SpecR. To

do this, we replace A and B by linear combinations of A and B, one of which has no
(x2/x1)

2 term, and one of which has no (x3/x1)
2 term. Then on Ux1 over the generic
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point of SpecR, we can write all functions in terms of 1, x2/x1, x3/x1, x2x3/x
2
1. We

can then also write the gi in terms of 1, x2/x1, x3/x1, x2x3/x
2
1, and just apply this

change of basis to the multiplication table to get a multiplication table for the gi. If
we take α1 = −g2, α2 = −g3, and α3 = −g4, we get exactly the multiplication tables
given by Bhargava in [6, Equations (15) and (21)].

In Section 6.4.2, we found that Qp/OS is canonically isomorphic to W ∗. However,
we also have explicit basis for Qp/OS when we have a basis for W . We see how these
bases are related.

Theorem 6.5.3. For the universal form u, in the map Qp → W ∗ from Section 6.4.2,
we have

g2 7→ x∗1
g3 7→ x∗3
g4 7→ x∗2.

Proof. We compute the map in two steps. We first find the map

R0π∗(O/u(O(−2)⊕2))→ R1π∗(O(−2)⊕2/u(O(−4)))

and then the map

R1π∗(O(−2)⊕2/u(O(−4)))→ R2π∗(O(−4)).

We compute each of the individual maps by using the snake lemma on the Cech
complex with the usual affine cover of P2. We summarize the computation in the
charts below, which should be read from upper right to lower left.
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O(−4) O(−2)⊕2 O(−2)⊕2

u(O(−4))
O O

u(O(−2)⊕2)

Γ(Ux1) h1,2

×Γ(Ux2) −h1,2 g2

×Γ(Ux3) −f3,2 + λ11
23

Γ(Ux1x2) (a33x3

x2
1x2

+ a13

x1x2
, h1,2 + h1,2 = H1,2

b33x3

x2
1x2

+ b13
x1x2

)

×Γ(Ux2x3) −h1,2 + f3,2 − λ11
23

= f2,3 + f3,2 − λ11
23

( a11

x2x3
, b11

x2x3
) = F23

×Γ(Ux3x1) h1,2 + f3,2 − λ11
23

= −h1,3 − h1,3

+a23
B
x2
1
− b23 A

x2
1

−(a22x2

x2
1x3

+ a12

x1x3
, = −H1,3

b22x2

x2
1x3

+ b12
x1x3

)

−(a23

x2
1
, b23

x2
1
) +a23

B
x2
1
− b23 A

x2
1

Γ(Ux1x2x3)
1

x2
1x2x3

A+B
x2
1x2x3
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O(−4) O(−2)⊕2 O(−2)⊕2

u(O(−4))
O O

u(O(−2)⊕2)

Γ(Ux1) h2,1

×Γ(Ux2) −h2,1 g3

×Γ(Ux3) f3,1 + λ13
22

Γ(Ux1x2) (a33x3

x1x2
2

+ a23

x1x2
, h2,1 + h2,1 = H2,1

b33x3

x1x2
2

+ b23
x1x2

)

×Γ(Ux2x3) −h2,1 − f3,1 − λ13
22

= h2,3 + h2,3

−a13
B
x2
2

+ b13
A
x2
2

(a11x1

x3x2
2

+ a12

x3x2
, = H2,3

b11x1

x3x2
2

+ b12
x3x2

)

+(a13

x2
2
, b13

x2
2
) −a13

B
x2
2

+ b13
A
x2
2

×Γ(Ux3x1) h2,1 − f3,1 − λ13
22

= −f1,3 − f3,1 − λ13
22

−( a22

x1x3
, b22

x1x3
) = −F13

Γ(Ux1x2x3)
1

x1x2
2x3

A+B
x1x2

2x3
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O(−4) O(−2)⊕2 O(−2)⊕2

u(O(−4))
O O

u(O(−2)⊕2)

Γ(Ux1) −h3,1

×Γ(Ux2) −f2,1 + λ33
12 g4

×Γ(Ux3) h3,1

Γ(Ux1x2) −h3,1 + f2,1 − λ33
12

= f2,1 + f1,2 + λ12
33

( a33

x1x2
, b33

x1x2
) = F12

×Γ(Ux2x3) −h3,1 − f2,1 + λ33
12

= h3,2 + h2,3

−a12
B
x2
3

+ b12
A
x2
3

(a11x1

x1x2
3

+ a13

x2x3
, = H3,2

b11x1

x1x2
3

+ b13
x2x3

)

+(a12

x2
3
, b12

x2
3
) −a12

B
x2
3

+ b12
A
x2
3

×Γ(Ux3x1) −(a22x2

x2
3x1

+ a23

x1x3
, −h3,1 − h3,1 =

b22x2

x2
3x1

+ b23
x1x3

) −H3,1

Γ(Ux1x2x3)
1

x1x2x2
3

A+B
x1x2x2

3

6.6 Construction of the cubic resolvent

In Section 6.2, we have already given a geometric construction of a cubic ring from
a binary cubic form. In Section 6.3, we defined the determinant of a double ternary
quadratic form p to be a binary cubic form det(p) ∈ Sym3 U∗ ⊗ (∧2U). The cubic
ring C of this binary cubic form can be constructed as described in Section 6.2, and
is the desired cubic resolvent.

We can also give a more geometric version of the construction of the binary cubic
form from p. We have a quadratic map from Sym2W (conic bundles in P(W ) over
S) to (∧3W )⊗2 as described in Section 6.3. In geometric fibers, we have that this
map is zero exactly when the conic fiber is non-smooth. Thus since p gives a map
from U∗ to Sym2W , we can compose to get a cubic map from U∗ to (∧3W )⊗2. This,
up to the orientation isomorphism, is the binary cubic form given by the double
ternary quadratic form p. As long as this map is not the zero map, its zeroes cut
out a subscheme of P(U), and the pushforward to S of the global functions of this

105



subscheme give the cubic ring over S. If the map given by p from U∗ to (∧3W )⊗2 is
zero, then an analogous hypercohomological construction will still give the appropriate
cubic ring. In other words, for nice forms, p gives a map from P(U) to the Hilbert
scheme of conic bundles in P(W ) over S, and when the image of this map is not
contained in the singular locus, the pullback of the singular locus gives a subscheme
of P(U), whose regular functions pushforward to the cubic resolvent ring.

We have C/OS
∼= U (see Chapter 3 for a similar, but simpler argument to the one

in Section 6.4.2). Thus, p gives the required quadratic map from Q/OS to C/OS. The
orientation isomorphism δ : ∧3Q/OS

∼= ∧2 C/OS comes from the orientation on the
double ternary quadratic form. On any open set, we can check that δ(x ∧ y ∧ xy) =
p(x) ∧ p(y) by looking on a open subcover on which W and U are trivial and pulling
back from the universal form on each open set in that subcover. It remains to check
that δ(x∧y∧xy) = p(x)∧p(y) when p is the universal ternary quadratic form, which
can be checked explicitly given the multiplication table of Qp. In particular, at the
end of the proof of the Main Theorem in Section 6.7, we lay out a plan to determine
the multiplication table of Qp in terms of p. The result agrees with the multiplication
table given explicitly in [6, Equations (15) and (21)]. The expressions δ(x ∧ y ∧ xy)
and p(x) ∧ p(y) both represent linear maps from Sym2(Qp/OS) ⊗ Sym2(Qp/OS) to
∧4Qp. Thus it suffices to check that these maps agree on a basis of global sections of
Sym2(Qp/OS) ⊗ Sym2(Qp/OS), since in this case Qp/OS is a free OS module. This
is easily checked, especially exploiting the symmetry of the situation.

6.7 Main Theorem

In this section, we prove the main theorem of this chapter.

Theorem 6.7.1. Over a scheme S, there is a bijection between isomorphism classes
of double ternary quadratic forms and pairs (Q,C) where Q is a quartic ring over S
and C is a cubic resolvent of Q. This bijection is functorial in S. In other words,
there is an isomorphism between the moduli stack of double ternary quadratic forms
and the moduli stack of pairs (Q,C) where Q is a quartic ring over S and C is a
cubic resolvent of Q.

Proof. Given a double ternary quadratic form p over a base S, we have shown how
to construct a pair (Qp, Cp), and all aspects of the construction commute with base
change in S. Given a pair (Q,C) over S, we can just take the quadratic map φ from
Q/OS to C/OS to be our double ternary quadratic form with W = (Q/OS)∗ and
U = C/OS (using the orientation ∧3Q/OS

∼= ∧2C/OS). This construction clearly
commutes with base change.

It remains to prove that the compositions of these two constructions (in either
order) are the identity. To prove this, we rigidify the moduli problems. A based
double ternary quadratic form is a ternary quadratic form p ∈ Sym2W ⊗ U and a
choice of bases w1, w2, w3 and u1, u2 for W and U respectively as free OS-modules,
such that (w1 ∧w2 ∧w3)⊗ (u1 ∧u2) corresponds to the identity under the orientation
isomorphism. A based pair (Q,C) of a quadratic ring and cubic resolvent is a a pair
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(Q,C) of quadratic ring and cubic resolvent and choices of basis q1, q2, q3 and c1, c2 for
Q/OS and C/OS as free OS-modules, such that (q1 ∧ q2 ∧ q3) corresponds to (c1 ∧ c2)
under the orientation isomorphism. We see that our constructions above extend to
the moduli stacks for these rigidified moduli problems. In particular, we get a basis
for Q/OS as a dual basis for the basis of W and vice versa.

It now suffices to show that these constructions compose to the identity on the
rigidified moduli stacks. If we start with a double ternary quadratic form p ∈
Sym2W ⊗ U , we get a pair (Q,C) whose quadratic map is given exactly by the
form, and then the construction of a form from (Q,C) gives back exactly our original
form. The choices of bases for W and U and the orientation are clearly preserved
under this composition.

We can start with a based pair (Q,C), and then build another based pair (Qφ, Cφ)
from the quadratic map φ of (Q,C), and we wish to show that (Q,C) and (Qφ, Cφ) are
equal. (We can use the notion of equal instead of isomorphic since all of the objects
are based.) We have that C and Cφ are both given as the cubic ring corresponding
to Det(φ) and thus are equal. The quadratic resolvent maps are the same, since φ
carries through the two constructions. The orientation isomorphism are clearly the
same since they also carry through the constructions. It remains to show that the
multiplication on Q agrees with the multiplication on Qφ. To do this, we will show
that the condition δ(1∧x∧ y∧xy) = φ(x)∧φ(y) determines the multiplication table
on Q from the resolvent map φ. Since Q and Qφ have the same resolvent map, this
will show that they are isomorphic as OS-algebras.

We let the quadratic map φ be written as Ac2 +Bc1, where A =
∑

1≤i≤j≤3 aijxixj,
and B =

∑
1≤i≤j≤3 bijxixj, and the xi are a dual basis for qi in Q/OS. We recall the

notation λ`1`2
`3`4

= a`1`2b`3`4 − b`1`2a`3`4 . We lift the basis qi of Q/OS to a basis of Q
uniquely so that q1q2 has no q1 or q2 term and so that q1q3 has no q1 term. Let mk

ij be
the coefficient of qk in the qiqj. From Equation (23) in [6], we know that the constant
coefficient of qiqj in given as a polynomial in the various m coefficients. Thus, it
remains to show that the mk

ij are determined by φ. We plug various x and y into
δ(1 ∧ x ∧ y ∧ xy) = φ(x) ∧ φ(y). In the below, we always let i, j, k be a permutation
of 1, 2, 3 and let ± be the sign of this permutation. First, letting x = qi and y = qj
gives mk

ij = ±λjj
ii . Then, letting x = qi + qj and y = qi gives mk

ii = ±λij
ii . Next,

letting x = qi + qk and y = qj gives mk
jk −mi

ij = ±λjj
ik. Using the choice of lift, which

gives m1
12 = m2

21 = m1
13 = 0, this determines all mi

ij. Finally, letting x = qi + qk
and y = qi + qj determines mi

ii in terms of the λ’s and the m’s that we have already
determined.

6.8 Appendix: Maps of locally free OS-modules

Let S be a scheme. We have the following corollary of Lemmas 3.7.3 and 3.7.4 which
is used throughout this chapter.

Corollary 6.8.1. If V is a locally free OS-module of rank two then

Sym3 V ⊗ (∧2V )⊗−2 ∼= Sym3 V ∗ ⊗ (∧2V ∗)⊗−1.
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6.8.1 Degree k maps

Let M and N be locally free OS-modules. A linear map from M to R is equivalent
to a global section of M∗. In other words, sections of M∗ are the degree 1 functions
on M . We define the degree n functions on M as the global sections of SymnM∗,
symmetric polynomials in linear functions on M .

Definition. A degree n map from M to N is a global section of

SymnM∗ ⊗N ∼= Hom(SymnM,N).

Note that the identity map on SymnM gives a canonical degree n map from M to

SymnM .
The language “degree n map from M to N” suggests that we should be able to

evaluate such a thing on elements of M .

Definition. Given a degree nmap fromM toN as an element f ∈ Hom(SymnM,N),
the evaluation of f on an element of M is f(m⊗ · · · ⊗m).

When M is free, say with generators m1, . . . ,mk and dual basis m1, . . .mk of M∗,
then we defined a degree n function f from M to R to be a homogeneous polynomial
of degree n in the m1, . . .mk. If we evaluate f on (c1m1 + · · · + ckmk) for arbitrary
sections ci of OS, we will get a degree n polynomial in the ci. Replacing the ci in this
polynomial by mi we get the homogeneous polynomial of degree n in the m1, . . .mk

which is the realization of f as an element of SymnM∗.
When M is free, we may have a non-linear map ρ : M → OS (or ρ : M → N ,

but we take N = OS for simplicity) and wish to realize it as the evaluation of a
degree n map. We can consider ρ(c1m1 + · · · + ckmk) for arbitrary ci ∈ R and if
ρ(c1m1 + · · · + ckmk) is a degree n polynomial in the ci, we have an f ∈ SymnM∗

(given by replacing the ci by mi) of which ρ is the evaluation).
Since M is locally free, we locally get f ∈ SymnM∗ and see that the above recipe

is invariant under change of basis and so we get a global f ∈ SymnM∗ (as long as
everywhere locally where M is free ρ(c1m1 + · · ·+ ckmk) is a degree n polynomial in
the ci).

As an example, we explicitly realize the determinant as a distinguished element
of

Hom(Symn Hom(M,N),Hom(∧nM,∧nN)).

Let φ1⊗ · · · ⊗ φn ∈ Hom(M,N)⊗n. Then we can map φ1⊗ · · · ⊗ φn to the element of
Hom(∧nM,∧nN) which sends m1 ∧ · · · ∧mn to φ1(m1) ∧ · · · ∧ φn(mn). This will not
be well-defined for φ1 ⊗ · · · ⊗ φn ∈ Hom(M,N)⊗n, but it will be well-defined when
restricted to Symn Hom(M,N).

Symn Hom(M,N) −→ Hom(∧nM,∧nN) (6.4)

φ1 ⊗ · · · ⊗ φn 7→ (m1 ∧ · · · ∧mn 7→φ1(m1) ∧ · · · ∧ φn(mn))

This is our realization of the determinant function (as opposed to the determinant of a
specific homomorphism) as an element of Hom(Symn Hom(M,N),Hom(∧nM,∧nN)).
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When we evaluate the determinant on a map φ ∈ Hom(M,N), we get φ(m1) ∧
· · · ∧ φ(mn). For example, let N and M be free of rank 2. Evaluating our degree 2
determinant map on a generic element of Hom(M,N) that sends m1 to an1 + cn2 and
m2 to bn1 + dn2, we see that we obtain the element of Hom(∧2M,∧2N) that sends
m1 ∧m2 to (an1 + cn2) ∧ (bn1 + dn2) = (ad− bc)n1 ∧ n2.

6.8.2 Degree k maps with coefficients

Recall that we have defined a degree k map from a locally free OS-module M to a
locally free OS-module V to be a linear map from Symk M to V . This is equivalent
to a global section of Symk M∗ ⊗ V . We use the following proposition to show that
we can “add coefficients” to a degree k map.

Proposition 6.8.2. In the natural map

Symk(M ⊗N)→M⊗k ⊗ Symk N,

the image of Symk(M ⊗N) is inside Symk M ⊗ Symk N .

Proof. We prove this proposition by checking the statement locally where the modules
are free. If we symmetrize a pure tensor of basis elements in (M ⊗N)⊗k, we see that
when we forget the terms from N we still get an element of Symk M . Since all of the
terms in the symmetrization will have the same factor in Symk N , this completes the
proof.

Thus, given a degree k map from M to V , we naturally obtain a degree k map
from M ⊗N to V ⊗ Symk N (by composing Symk(M ⊗N)→ Symk M ⊗ Symk N →
V ⊗ Symk N). We call this construction using V as coefficients, because it is as if we
treat the elements of V as formal ring elements.
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Chapter 7

Quartic rings with quadratic
subrings or cubic quotients

7.1 Introduction

Quartic rings, along with a cubic resolvent, are parametrized by pairs of ternary
quadratic forms [6]. The cubic resolvent is an integral model of the classical resolvent
field of a quartic field. This result is over Z, but an analogous result can also be
formulated over an arbitrary base scheme S. A rank n ring over S is an OS-algebra
R such that R/OS is a locally free rank n−1 OS-module. A double ternary quadratic
form over S is a locally free rank 3 OS-module W , a locally free rank 2 OS-module U ,
a global section p ∈ Sym2W ⊗U , and an orientation isomorphism ∧3W ⊗∧2U ∼= OS.
Recall the following theorem from Chapter 6.

Theorem 6.1.2. Over a scheme S, there is a bijection between isomorphism classes
of double ternary quadratic forms and pairs (Q,C) where Q is a quartic ring over
S and C is a cubic resolvent ring of Q. This bijection is functorial in S. In this
bijection we have Q/OS

∼= W ∗ and C/OS
∼= U .

In this chapter we will investigate some special structures on quartic rings and
what properties of double ternary quadratic forms p ∈ Sym2W ⊗ U they correspond
to. One main structure of interest is quartic rings with quadratic subrings. These
occur, for example, in orders in quartic fields whose Galois closure has Galois group
D4. We will also study quartic rings with cubic ring quotients. These occur in orders
in the product of a cubic field and Q. We will define several properties of double
ternary quadratic forms, and see how each property relates these special structures
on quartic rings.

We can specialize the base scheme to S = Spec Z to get a parametrization that
includes orders in quartic fields. For example, consider the space VZ of pairs of
symmetric matrices

A1 =

a111
a121

2
a131

2
a121

2
a221

a231

2
a131

2
a231

2
a331

 A2 =

a112
a122

2
a132

2
a122

2
a222

a232

2
a132

2
a232

2
a332

 ,
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with aijk ∈ Z. We have an action of GL2(Z)×GL3(Z) on these matrices. The action
of g = ( a b

c d ) ∈ GL2(Z) takes (A1, A2) to (aA1 + bA2, cA1 + dA2). The GL3(Z) action
is given by (A1, A2) 7→ (gA1g

t, gA2g
t). Let G be the subgroup of GL2(Z) × GL3(Z)

of (g1, g2) such that det(g1) det(g2) = 1, and

g1 =

(
∗ 0
∗ ∗

)
and g2 =

∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

 .

An element of VZ is degenerate if the discriminant of 4 Det(A1x1 −A2x2) is zero. We
then have a parametrization of quartic rings with quadratic subrings.

Theorem 7.1.1. We have a bijection


G-equivalence classes of non-
degenerate elements of VZ, such
that A1 has top row zero and
a112 6= 0

←→


isomorphism classes of (Q,C, T )
with Q a non-degenerate quartic
ring, and C a cubic resolvent, and
T a primitive quadratic subalgebra
of Q, such that T → T/Z does not
have a splitting whose image is an
ideal of Q


.

Notation. Throughout this chapter, we will work with a double ternary quadratic
form p ∈ Sym2W ⊗ U over a scheme S. For all of the properties we will study, we
fix a locally free rank 1 quotient W → L. We let K be the kernel of W → L. If B
is a locally free OS-module, we say that A is a primitive submodule of B if A is a
submodule of B such that A and B/A are both locally free OS-modules.

7.2 Special double ternary quadratic forms and

special quartic rings

We will now study special double ternary quadratic forms over an arbitrary base
scheme S. For any element v in V1 ⊗ V2, where the Vi are locally free OS-modules,
we can take its two-by-two minor det2(v) ∈ ∧2V1 ⊗ ∧2V2. Thus we get det2(p) ∈
∧2(Sym2W ) ⊗ ∧2U . It will be more convenient for us to view ∧2(Sym2W ) ⊂
(Sym2W )⊗2 via the natural map x∧ y 7→ x⊗ y− y⊗ x. (This map ∧2V → V ⊗ V is
just the dual of the usual map V ∗ ⊗ V ∗ → ∧2V ∗.)

Definition. The double ternary quadratic form p is angled with respect to L if
det2(p) maps to 0 in (Sym2W )⊗2 ⊗ ∧2U → (Sym2W/ Sym2K)⊗ Sym2 L⊗ ∧2U .

Formally, we define an angled double ternary quadratic form to be (W,U,L, p),
such that we have a surjective map W → L, and such that p ∈ Sym2W ⊗U is angled
with respect to L. An isomorphism of two angled double ternary quadratic forms
(W,U,L, p) and (W ′, U ′, L′, p′) consists of isomorphisms W ∼= W ′, and U ∼= U ′, and
L ∼= L′ that respect the maps W → L and W ′ → L′ and take p to p′.
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Theorem 7.2.1. We have that p is angled with respect to L if and only if in the
corresponding quartic ring Q, the kernel of Q → K∗ is a subalgebra of Q. In other
words, a primitive rank 2 submodule T of Q (with OS ⊂ T ) is a sub-algebra if and
only if a resolvent mapping φ of Q is angled with respect to the quotient (Q/OS)∗ →
(T/OS)∗.

Corollary 7.2.2. We have an isomorphism between the stack of angled double ternary
quadratic forms, and the stack of triples (Q,C, T ), where Q is a quartic ring, C is a
cubic resolvent, and T is a primitive quadratic subalgebra of Q.

Proof. We can check both conditions locally on the base scheme S, and therefore we
can assume U , L, and K are free. Let l be a basis element for l and let k1, k2 be
basis elements for K, corresponding, respectively, to the basis w1, w2, w3 of W . Let
u1, u2 be a basis for U . Write p =

∑
aijkwiwjuk. Let λij

kl = aij1akl2 − aij2akl1. Then
the condition that p is angled is equivalent to λ11

12 = λ11
13 = 0. We want to show that

OS ⊕ L∗ is a subalgebra of Q, or equivalently, that (l∗)2 has no k∗1 or k∗2 coefficients.
(This statement does not depend of the choices of lifts of l∗, k∗1, k

∗
2 to Q to form a

basis along with 1.) If we write α1 = l∗, and α2 = k∗1, and α3 = k∗2 (i.e. αi are a
dual basis to the wi), then we know the multiplication table for the (normalized) αi

in terms of the aijk from [6, Equations (21) and (23)]. In particular, we know that
the α2 coefficient of α2

1 is λ11
13 and the α3 coefficient of α2

1 is λ11
12. Thus, OS ⊕ L∗ is a

subalgebra of Q if and only if λ11
12 = λ11

13 = 0.

Definition. The double ternary quadratic form p is crossed with respect to L if p
maps to 0 in the map (Sym2W )⊗2 ⊗ ∧2U → (Sym2W )⊗ Sym2 L⊗ ∧2U .

If p is crossed with repsect to L then it is also angled.

Theorem 7.2.3. We have that p is crossed with respect to L if and only if the
corresponding quartic ring Q has a cubic algebra quotient Q→ R whose kernel maps
to L∗ in Q/OS. In other words, a quotient map Q→ R from Q to a locally free rank
3 OS-module such that OS maps injectively is a morphism of algebras (i.e. its kernel
is an ideal) if and only if p is crossed with repsect to the dual of its kernel.

Corollary 7.2.4. We have an isomorphism between the stack of crossed double
ternary quadratic forms, and the stack of triples (Q,C,R), where Q is a quartic
ring, C is a cubic resolvent, and R is a cubic algebra quotient of Q.

Proof. We can check both conditions locally on the base scheme S, and therefore we
can assume U , L, and K are free. Let l be a basis element for l and let k1, k2 be
basis elements for K, corresponding, respectively, to the basis w1, w2, w3 of W . Let
u1, u2 be a basis for U . Write p =

∑
aijkwiwjuk. Let λij

kl = aij1akl2 − aij2akl1. The
the condition that p is crossed is equivalent to λ11

12 = λ11
13 = λ11

23 = λ11
22 = λ11

33 = 0. This
implies that if we lift w∗i to a normalized basis αi (with 1), i.e. such that α1α2 has no
α1 or α2 coefficient and α1α3 has no α1 coefficient, then we can read the multiplication
table from [6, Equations (21) and (23)], and see that α2

1 has no α2 or α3 coefficients

112



(since λ11
12 = λ11

13) and that α1α2, α1α3 ∈ OS (since λ11
22 = λ11

33 = λ11
23 = 0). We write

out here the constant coefficients of α1αj for ease of reference:

c01j =
∑

r

crj2c
2
r1 − cr1jc

2
r2.

Note that c2r1 = 0 for all r, and cr1j is only non-zero for j = r = 1, in which case
c2r2 = 0. Thus, α2

1 is a multiple of α1, and α1α2 = α1α3 = 0. We conclude that the
OS-module generated by α1 is an ideal of Q.

If Q has a cubic algebra quotient Q→ R, then we can let L∗ be the image of its
kernel in Q/OS, and L be the corresponding quotient of W . Then, locally on the base
where all the involved modules are free, we can write everything in terms of bases as
above. We have then that for some k ∈ OS, that (α1 + k)OS is an ideal of Q. There
can only be one such k since (α1 +k)α2− (α1 +k′)α2 is only a multiple of α1 if k = k′.
In particular, it must be the k such that (α1 + k)α2 has no α2 coefficient, and this is
k = 0 since we chose the αi normalized. Since α2

1 has no α3 or α2 coefficient, we obtain
that λ11

12 = λ11
13 = 0. Since α1α2 has no α3 coefficient, we see that λ11

22 = 0. Since α1α3

has no α3 or α2 coefficient, we see that λ11
23 = λ11

33 = 0. Thus any p corresponding to
Q is crossed with repsect to L.

Since any crossed p is also angled, it is natural to ask what the quadratic subalge-
bra is, and from the above proof we see that the quadratic subalgebra is OS⊕ker(Q→
R).

Definition. The double ternary quadratic form p is pointed with respect to L if p
is in the kernel of the natural map Sym2W ⊗ U → Sym2 L⊗ U .

It is not hard to see that if p is pointed with respect to L then p is crossed (and
thus angled) with respect to L. (If we write p =

∑
aijkwiwjuk as in the above proofs

then p is pointed if and only if a111 = a112 = 0.)
Now we fix not only a rank 1 quotientW → L, but also a rank 1 quotient U∗ →M .

We can view p as a degree two map from W ∗ to U .

Definition. The double ternary quadratic form p is oblique with respect to L,M if
over any open set U of the base we have that p(q+L∗)−p(q) ∈M∗ for all q ∈ W ∗(U).

If we write p =
∑
aijkwiwjuk, where u2 is a basis for M∗, then p is oblique if and

only if a111 = a121 = a131 = 0. If p is oblique, then it is angled with respect to L.

7.3 Working over a principal ideal domain

Now we specialize to the case when S = SpecB, where B is a principal ideal domain.

Theorem 7.3.1. If p is angled with repsect to L and not pointed with respect to L,
then it is oblique with respect to L and some M .
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In other words, over a PID angled and not pointed is equivalent to oblique and
not pointed. This tells us that quartic rings with quadratic subalgebras not of the
form OS ⊕ I, (where I is an ideal of Q) correspond to oblique forms.

Proof. Let p ∈ Sym2W⊗U , and let L be a free rank 1 quotient ofW . SinceB is a PID,
all locally free modules of finite rank are free and thus we write p =

∑
aijkwiwjuk.

(Here, L is the quotient of W by w2 and w3.) We can do a GL2(B) change of basis
of u1, u2 so that we have a111 = 0.

Now supposed p is angled with respect to L. If p is not pointed, then a112 is not
zero, and thus since λ11

12 = λ11
13 = 0 we have that a111 = a121 = a131 = 0, and that p

is oblique with respect to L,M , where M is the quotient of U∗ by u∗1. We can also
describe M more canonically: p(L∗) lies in a unique primitive rank 1 B-sub-module
M∗ of U .

Theorem 7.3.2. When S = SpecB, where B is a principal ideal domain, if p is
crossed and not pointed for L then it has discriminant 0.

Proof. We work as in the above proof, and with that notation. Then, since a112 is
not zero, we have that aij1 = 0 for all i and j. In particular, p has discriminant 0.

Thus for nondegenerate (non-zero discriminant) double ternary quadratic forms,
crossed and pointed for L are equivalent.

If we are interested in orders of quartic fields whose Galois closure has group D4 we
see that they are angled but not crossed (and thus oblique and not pointed). We now
give bijections of B-orbits that in the case B = Z parametrize such orders. To work
concretely, we represent our double ternary quadratic forms with pairs of symmetric
matrices, which will require that B is not characteristic 2. We will consider the space
VB of pairs of symmetric matrices

A1 =

a111
a121

2
a131

2
a121

2
a221

a231

2
a131

2
a231

2
a331

 A2 =

a112
a122

2
a132

2
a122

2
a222

a232

2
a132

2
a232

2
a332

 ,

with aijk ∈ B. We have an action of GL2(B)×GL3(B) on these matrices. The action
of g = ( a b

c d ) ∈ GL2(B) takes (A1, A2) to (aA1 + bA2, cA1 + dA2). The GL3(B) action
is given by (A1, A2) 7→ (gA1g

t, gA2g
t). Let G be the subgroup of GL2(B) × GL3(B)

of (g1, g2) such that det(g1) det(g2) = 1, and

g1 =

(
∗ 0
∗ ∗

)
and g2 =

∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

 .

We then have a theorem for oblique forms, essentially from the definition.
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Theorem 7.3.3. Let B be a principal ideal domain of characteristic not equal to 2.
We have a bijection

{
G-equivalence classes of elements
of VB, such that A1 has top row
zero

}
←→



isomorphism classes of
(Q,C, L∗,M∗) with Q a quar-
tic ring over B, and C a cubic
resolvent, and L∗ and M∗ primi-
tive, rank 1 B-submodules of Q/B
and R/B respectively, such that
φ(x + L∗) − φ(x) ∈ M∗ for all
x ∈ Q


An isomorphism of (Q,R,L∗,M∗) and (Q′, R′, L∗′,M∗′) is an isomorphism of

(Q,R) to (Q′, R′) that takes L∗ to L∗′ and takes M∗ to M∗′. If φ is not pointed
with respect to (α1OS)∗, then φ(L∗) is not 0, and M∗ is the unique primitive rank
1 module containing φ(L∗). We thus have a theorem for oblique, non-pointed forms,
which follows by restricting the above bijection to the case that φ(L∗) 6= 0.

Theorem 7.3.4. Let B be a principal ideal domain of characteristic not equal to 2.
We have a bijection

{
G-equivalence classes of elements
of VB, such that A1 has top row
zero and a112 6= 0

}
←→



isomorphism classes of (Q,C, L∗)
with Q a quartic ring over B, and
C a cubic resolvent, and L∗ a prim-
itive rank 1 submodule of Q/B
such that φ(L∗) 6= 0 and φ(x +
L∗)−φ(x) lies in the primitive rank
1 module containing φ(L∗) for all
x ∈ Q


.

However, a pair (A1, A2) of ternary quadratic forms, such that A has no terms
involving x1 and b11 6= 0, is equivalent to a pair (A1, A2) such that a11 = 0 and b11 6= 0
and λ11

12 = λ11
13 = 0, which is equivalent to a pair (A1, A2) such that a11 = 0 which

is angled but not pointed (or, equivalently for non-degenerate pairs, not crossed) in
the first coordinate. We thus have theorems for angled, non-pointed and angled,
non-crossed forms.

Theorem 7.3.5. Let B be a principal ideal domain of characteristic not equal to 2.
We have a bijection

{
G-equivalence classes of elements
of VB, such that A1 has top row
zero and a112 6= 0

}
←→


isomorphism classes of (Q,C, S)
with Q a quartic ring over B, and
C a cubic resolvent, and T a primi-
tive quadratic subalgebra of Q, such
that φ(T ) 6= 0


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Theorem 7.3.6. Let B be a principal ideal domain of characteristic not equal to 2.
We have a bijection


G-equivalence classes of non-
degenerate elements of VB, such
that A1 has top row zero and
a112 6= 0

←→


isomorphism classes of (Q,C, T )
with Q a non-degenerate quartic
ring over B, and C a cubic resol-
vent, and T a primitive quadratic
subalgebra of Q, such that T →
T/B does not have a splitting
whose image is an ideal of Q


.

The nice thing about Theorem 7.3.6 is that the conditions only depend on Q and
not the choice of cubic resolvent. In particular, a maximal D4 order (maximal order
in a quartic number field whose Galois closure has Galois group D4) has a unique
resolvent [6] and a unique primitive quadratic subring. Moreover, a D4 order has no
rank 1 ideals. Therefore, each isomorphism class of D4 orders appears exactly once
in the bijection of Theorem 7.3.6.

7.4 Relating to Galois Groups

Let K be a field and consider a double ternary quartic form p over SpecK. For the
rest of this section, we assume Disc(p) 6= 0. Then we have that p corresponds to an
étale quartic K-algebra Q, which is just a direct product of field extensions of K. We
list the possibilities here.

1. L4, a quartic number field

2. K × L3, with L3 a cubic extension

3. L2 ×M2, with L2, M2 quadratic extensions

4. L2 × L2, with L2 a quadratic extension

5. K ×K × L2, with L2 a quadratic extension

6. K ×K ×K ×K

If p is angled, then Q has a quadratic subalgebra T . We have α1 ∈ Q, which in
each projection to a field is of degree at most 2. In particular, α1 must satisfy the
same quadratic equation in each projection to a field. Also, α1 6∈ K. If the minimal
polynomial of α1 is reducible, then in each projection α1 must map to one of the two
K-rational roots of the polynomial, and it cannot always map to the same rational
root. This is possible in all but case 1 above. If the minimal polynomial for α1 is
irreducible, α1 must map to a root of that polynomial in each projection onto a field,
and that is possible in only cases 1 and 4 above. In case 1, it is only possible when K4

has a quadratic subfield, which is when the Galois closure of K4 over K has Galois
group D4, V4, or C4. If p is crossed, then Q has a cubic algebra quotient. This is
possible exactly in cases 2, 5, and 6 above.

116



Similarly, we can consider the case of a non-degenerate double ternary quadratic
form over a domain B. Let K be the fraction field of B. If Disc(p) 6= 0, the corre-
sponding Q is an order in a K-algebra of one of the above types. If a non-degenerate
p is angled with corresponding subalgebra T , then Q must be an order in a quartic
field (whose Galois closure over K has Galois group D4, V4, or C4) or an order in an
algebra which is not a field.

In Theorem 7.3.6, in which we assume that B is a PID, the only quartic rings
over B that can appear are subrings of quartic extensions of K (whose Galois closure
over K has Galois group D4, V4, or C4) and subrings in K-algebras of types 3, 4, 5,
or 6 above. For subrings of K-algebras of type 2 above, the quadratic subalgebra T
is such that T/Z has a lift to an ideal of Q whose elements have projection 0 in L3.
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